

Cooler

Cooler is a Python support library for .cool/.mcool files: an efficient storage format for high resolution genomic interaction matrices.

The cooler package aims to facilitate:

	Creation, aggregation and manipulation of genomically-labeled sparse matrices.

	Querying: sequential and range query patterns and tabular and sparse/dense array retrieval.

	Scalable out-of-core operations on the data.

	Data export and visualization.

Follow cooler development on GitHub [https://github.com/mirnylab/cooler].

Contents:

	Quickstart
	Installation

	Command line interface

	Python API

	What is cooler?
	Genomically-labeled arrays

	Data model

	Container

	Concepts
	Resource String

	Data selection

	Create a scool file

	Schema
	Data collection

	URI syntax

	Tables

	Indexes

	Storage mode

	Metadata

	File flavors

	Previous schema versions

	API Reference
	Quick reference

	cooler

	cooler.create

	cooler.fileops

	cooler.util

	cooler.sandbox

	CLI Reference
	Quick reference

	cooler cload

	cooler cload pairs

	cooler cload pairix

	cooler cload tabix

	cooler cload hiclib

	cooler load

	cooler merge

	cooler coarsen

	cooler zoomify

	cooler balance

	cooler info

	cooler dump

	cooler show

	cooler tree

	cooler attrs

	cooler ls

	cooler cp

	cooler mv

	cooler ln

	cooler makebins

	cooler digest

	cooler csort

	Release notes
	Upcoming release…

	v0.8.9

	v0.8.8

	v0.8.7

	v0.8.6

	v0.8.5

	v0.8.4

	v0.8.3

	v0.8.2

	v0.8.1

	v0.8.0

	v0.7.11

	v0.7.10

	v0.7.9

	v0.7.8

	v0.7.7

	v0.7.6

	v0.7.5

	v0.7.4

	v0.7.3

	v0.7.2

	v0.7.1

	v0.7.0

	v0.6.6

	v0.6.5

	v0.6.4

	v0.6.3

	v0.6.2

	v0.6.1

	v0.6.0

	v0.5.3

	v0.5.2

	v0.5.1

	v0.5.0

	v0.4.0

	v0.3.0

	v0.2.1

	v0.2

	v0.1

	Index

	Glossary

Quickstart

Installation

Install cooler from PyPI [https://pypi.org/project/cooler] using pip.

$ pip install cooler

Requirements:

	Python 2.7 or 3.4 and higher

	libhdf5

	Python packages numpy, scipy, pandas, h5py.

We highly recommend using the conda package manager to install scientific packages like these. To get conda, you can download either the full Anaconda [https://www.continuum.io/downloads] Python distribution which comes with lots of data science software or the minimal Miniconda [http://conda.pydata.org/miniconda.html] distribution which is just the standalone package manager plus Python. In the latter case, you can install the packages as follows:

$ conda install numpy scipy pandas h5py

If you are using conda, you can alternatively install cooler from the bioconda channel [https://bioconda.github.io].

$ conda install -c conda-forge -c bioconda cooler

Command line interface

See:

	Jupyter Notebook CLI walkthrough [https://github.com/mirnylab/cooler-binder/blob/master/cooler_cli.ipynb].

	The CLI Reference [http://cooler.readthedocs.io/en/latest/cli.html] for more information.

The cooler package includes command line tools for creating, querying and manipulating cooler files.

$ cooler cload pairs hg19.chrom.sizes:10000 $PAIRS_FILE out.10000.cool
$ cooler balance -p 10 out.10000.cool
$ cooler dump -b -t pixels --header --join -r chr3:10M-12M -r2 chr17 out.10000.cool | head

Output:

chrom1 start1 end1 chrom2 start2 end2 count balanced
chr3 10000000 10010000 chr17 0 10000 1 0.810766
chr3 10000000 10010000 chr17 520000 530000 1 1.2055
chr3 10000000 10010000 chr17 640000 650000 1 0.587372
chr3 10000000 10010000 chr17 900000 910000 1 1.02558
chr3 10000000 10010000 chr17 1030000 1040000 1 0.718195
chr3 10000000 10010000 chr17 1320000 1330000 1 0.803212
chr3 10000000 10010000 chr17 1500000 1510000 1 0.925146
chr3 10000000 10010000 chr17 1750000 1760000 1 0.950326
chr3 10000000 10010000 chr17 1800000 1810000 1 0.745982

Python API

See:

	Jupyter Notebook API walkthrough [https://github.com/mirnylab/cooler-binder/blob/master/cooler_api.ipynb].

	The API Reference for more information.

The cooler library provides a thin wrapper over the excellent NumPy-aware h5py [http://docs.h5py.org/en/latest/] Python interface to HDF5. It supports creation of cooler files and the following types of range queries on the data:

	Tabular selections are retrieved as Pandas DataFrames and Series.

	Matrix selections are retrieved as NumPy arrays, DataFrames, or SciPy sparse matrices.

	Metadata is retrieved as a json-serializable Python dictionary.

	Range queries can be supplied using either integer bin indexes or genomic coordinate intervals.

>>> import cooler
>>> import matplotlib.pyplot as plt
>>> c = cooler.Cooler('bigDataset.cool')
>>> resolution = c.binsize
>>> mat = c.matrix(balance=True).fetch('chr5:10,000,000-15,000,000')
>>> plt.matshow(np.log10(mat), cmap='YlOrRd')

>>> import multiprocessing as mp
>>> import h5py
>>> pool = mp.Pool(8)
>>> c = cooler.Cooler('bigDataset.cool')
>>> weights, stats = cooler.balance_cooler(c, map=pool.map, ignore_diags=3, min_nnz=10)

What is cooler?

Cooler is the implementation of a data model for genomically-labeled sparse 2D arrays (matrices) with identical axes in HDF5. It is also the name of the Python package [https://github.com/mirnylab/cooler] that supports the format.

We use the term genomically-labeled array to refer to a data structure that assigns unique quantitative values to tuples of genomic bins obtained from an interval partition of a reference genome assembly. The tuples of bins make up the coordinates of the array’s elements. By omitting elements possessing zero or no value, the representation becomes sparse.

Cooler was designed for the storage and manipulation of extremely large Hi-C datasets at any resolution, but is not limited to Hi-C data in any way.

Genomically-labeled arrays

We can describe two tabular representations of such data.

BG2

By extending the bedGraph [https://genome.ucsc.edu/goldenPath/help/bedgraph.html] format, we can encode a 2D array with the following header.

	chrom1

	start1

	end1

	chrom2

	start2

	end2

	value

Other bin-related attributes (e.g. X and Y) and be appended as columns X1, X2, Y1, Y2, and so on. One problem with this representation is that each bin-related attribute can be repeated many times throughout the table, leading to great redundancy.

Note

bedGraph is technically different from BED [https://bedtools.readthedocs.io/en/latest/content/general-usage.html?highlight=bedpe#bed-format]: the former describes a quantitative track supported by non-overlapping intervals (a step function), while the latter describes genomic intervals with no such restrictions. BG2 is different from BEDPE [https://bedtools.readthedocs.io/en/latest/content/general-usage.html?highlight=bedpe#bedpe-format] in the same way: intervals on the same axis are non-overlapping and interval pairs are not repeated (describing a heatmap).

COO

A simple solution is to decompose or “normalize” the single table into two files. The first is a bin table that describes the genomic bin segmentation on both axes of the matrix
(in the one-dimensional bedGraph style). The second table contains single columns that reference the rows of the bin table, providing a condensed representation of the nonzero elements of the array. Conveniently, this corresponds to the classic coordinate list (COO) sparse matrix representation. This two-table representation is used as a text format by HiC-Pro [http://nservant.github.io/HiC-Pro/RESULTS.html].

	bins

	chrom

	start

	end

	elements

	bin1_id

	bin2_id

	value

The table of elements (non-zero pixels) is often too large to hold in memory, but for any small selection of elements we can reconstitute the bin-related attributes by “joining” the bin IDs against the bin table. We refer to this process as element annotation.

Data model

We model a genomically-labeled sparse matrix using three tables. It corresponds to the bin and element (pixel) tables above. We include a third chromosome description table for completeness, and indexes to support random access.

Tables

chroms

	Required columns: name[, length]

	Order: enumeration

An semantic ordering of the chromosomes, scaffolds or contigs of the assembly that the data is mapped to. This information can be extracted from the bin table below, but is included separately for convenience. This enumeration is the intended ordering of the chromosomes as they would appear in a global genomic matrix. Additional columns can provide metadata on the chromosomes, such as their length.

bins

	Required columns: chrom, start, end [, weight]

	Order: chrom (enum), start

An enumeration of the concatenated genomic bins that make up a single dimension or axis of the global genomic matrix. Genomic bins can be of fixed size or variable sizes (e.g. restriction fragments). A genomic bin is defined by the triple (chrom, start, end), where start is zero-based and end is 1-based. The order is significant: the bins are sorted by chromosome (based on the chromosome enumeration) then by start, and each genomic bin is implicitly endowed with a 0-based bin ID from this ordering (i.e., its row number in the table). A reserved but optional column called weight can store weights for normalization or matrix balancing. Additional columns can be added to describe other bin-associated properties such as additional normalization vectors or bin-level masks.

pixels

	Required columns: bin1_id, bin2_id, count

	Order: bin1_id, bin2_id

The array is stored as a single table containing only the nonzero upper triangle elements, assuming the ordering of the bins given by the bin table. Each row defines a non-zero element of the genomic matrix. Additional columns can be appended to store pixel-associated properties such as pixel-level masks or filtered and transformed versions of the data. Currently, the pixels are sorted lexicographically by the bin ID of the 1st axis (matrix row) then the bin ID of the 2nd axis (matrix column).

Indexes

The sort order on the pixels and types of indexing strategies that can be used are strongly related.
We stipulate that the records of the pixel table must be sorted lexicographically by the bin
ID along the first axis, then by the bin ID along the second axis. This way, the bin1_id column can
be substituted with its run length encoding, which serves as a lookup index for the rows of the ma-
trix. With this index, we obtain a compressed sparse row (CSR) sparse matrix representation.

Given an enumeration of chromosomes, the bin table must also be lexicographically sorted by chromosome then by start coordinate. Then similarly, the chrom column of the bin table will reference the rows of the chrom table, and can also be substituted with a run length encoding.

Container

The reference implementation of this data model uses HDF5 [https://www.hdfgroup.org/HDF5/] as the container format. HDF5 is a hierarchical data format for homongenenously typed multidimensional arrays, which supports chunking, compression, and random access. The HDF5 file specification and open source standard library is maintained by the nonprofit HDF Group.

HDF5 files consist of three fundamental entities: groups, datasets, and attibutes. The hierarchical organization of an HDF5 file is conceptually analogous to a file system: groups are akin to directories and datasets (arrays) are akin to files. Additionally, key-value metadata can be attached to groups and datasets using attributes. The standard library provides the ability to access and manipulate these entities. There are bindings for virtually every platform and programming environment. To learn more in detail about HDF5, I recommend the book HDF5 and Python [https://www.safaribooksonline.com/library/view/python-and-hdf5/9781491944981/ch01.html] by Andrew Collette, the author of h5py.

To implement the data model in HDF5, data tables are stored in a columnar representation as HDF5 groups of 1D array datasets of equal length. Metadata is stored using top-level attributes. See the schema.

HDF5 bindings in other languages

	canonical C-library libhdf5 [https://www.hdfgroup.org/HDF5/]

	C++: C++ API [https://www.hdfgroup.org/HDF5/doc/cpplus_RM/]

	IDL: bindings [http://www.harrisgeospatial.com/docs/routines-102.html]

	Java: Java HDF5 Interface [https://www.hdfgroup.org/products/java/JNI3/jhi5/index.html]

	Julia: HDF5.jl [https://github.com/JuliaIO/HDF5.jl]

	Mathematica: API [http://reference.wolfram.com/language/ref/format/HDF.html]

	MATLAB: high and low level API [http://www.mathworks.com/help/matlab/hdf5-files.html]

	node.js: hdf5.node [https://github.com/HDF-NI/hdf5.node]

	Perl: PDL::IO::HDF5 [http://search.cpan.org/~chm/PDL-IO-HDF5-0.6501/hdf5.pd]

	R: rhdf5 [http://bioconductor.org/packages/release/bioc/html/rhdf5.html], h5 [https://cran.r-project.org/web/packages/h5/]

	Apache Spark [https://hdfgroup.org/wp/2015/03/from-hdf5-datasets-to-apache-spark-rdds/]

Caveats

HDF5 is not a database system and is not journalled. It supports concurrent read access but not simultaneous reads and writes (with upcoming support for the SWMR [http://docs.h5py.org/en/latest/swmr.html] access pattern). One must be careful using multi-process concurrency based on Unix fork(): if a file is already open before the fork, the child processes will inherit state such that they won’t play well with each other on that file. HDF5 will work fine with Python’s multiprocessing as long as you make sure to close file handles before creating a process pool. Otherwise, you’ll need to use locks or avoid opening the file in worker processes completely (see this blog post [http://assorted-experience.blogspot.ca/2013/11/h5py-and-multiprocessing.html] for a simple workaround). For more information on using multiprocessing safely, see this discussion [https://groups.google.com/forum/#!topic/h5py/bJVtWdFtZQM].

Concepts

Resource String

The default location for a single-cooler .cool file is the root group / of the HDF5 file. It does not need to be explicitly specified.

>>> import cooler
>>> c = cooler.Cooler('data/WT.DpnII.10kb.cool')
>>> c = cooler.Cooler('data/WT.DpnII.10kb.cool::/') # same as above

However, coolers can be stored at any level of the HDF5 hierarchy and qualified using a URI string of the form /path/to/cool/file::/path/to/cooler/group.

>>> c1 = cooler.Cooler('data/WT.DpnII.mcool::resolutions/10000')
>>> c2 = cooler.Cooler('data/WT.DpnII.mcool::resolutions/1000')

The current standard for Hi-C coolers is to name multi-resolution coolers under .mcool extension,
and store differrent resolutions in an HDF5 group resolutions, as shown above.

Data selection

Several cooler.Cooler methods return data selectors. Those include selecting tables and matrices (see below). Data selectors don’t retrieve any data from disk until queried. There are several ways to query using selectors. Genomic range strings may be provided as 3-tuples (chrom: str, start: int, end: int) or in UCSC-style strings of the style {chrom}:{start}-{end}. Unit prefixes k, M, G are supported in range strings. For regions with start and end that are not multiples of the resolution, selectors return the range of shortest range bins that fully contains the open interval [start, end).

Table selectors (chroms, bins, pixels)

There are data selectors for the three tables: cooler.Cooler.chroms(), cooler.Cooler.bins(), cooler.Cooler.pixels().
They support the following:

	lazily select columns or lists of columns, returning new selectors

	query table rows using integer/slice indexing syntax

>>> c.bins()
<cooler.core.RangeSelector1D at 0x7fdb2e4f0710>

>>> c.bins()[:10]
chrom start end weight
0 chr1 0 1000000 NaN
1 chr1 1000000 2000000 1.243141
2 chr1 2000000 3000000 1.313995
3 chr1 3000000 4000000 1.291705
4 chr1 4000000 5000000 1.413288
5 chr1 5000000 6000000 1.165382
6 chr1 6000000 7000000 0.811824
7 chr1 7000000 8000000 1.056107
8 chr1 8000000 9000000 1.058915
9 chr1 9000000 10000000 1.035910

>>> c.pixels()[:10]
 bin1_id bin2_id count
0 0 0 18578
1 0 1 11582
2 0 2 446
3 0 3 196
4 0 4 83
5 0 5 112
6 0 6 341
7 0 7 255
8 0 8 387
9 0 9 354

>>> c.bins()['weight']
 <cooler.core.RangeSelector1D at 0x7fdb2e509240>

>>> weights = c.bins()['weight'].fetch('chr3')
>>> weights.head()
494 1.144698
495 1.549848
496 1.212580
497 1.097539
498 0.871931
Name: weight, dtype: float64

>>> mybins1 = c.bins().fetch('chr3:10,000,000-20,000,000')
>>> mybins2 = c.bins().fetch(('chr3', 10000000, 20000000))
>>> mybins2.head()
 chrom start end weight
504 chr3 10000000 11000000 0.783160
505 chr3 11000000 12000000 0.783806
506 chr3 12000000 13000000 0.791204
507 chr3 13000000 14000000 0.821171
508 chr3 14000000 15000000 0.813079

Matrix selector

The cooler.Cooler.matrix() selector supports two types of queries:

	2D bin range queries using slice indexing syntax

	2D genomic range range queries using the fetch method

The matrix selector’s fetch method is intended to represent a 2D range query (rectangular window), similar to the slice semantics of a 2D array. Given a matrix selector sel, when calling sel.fetch(region1, region2) the region1 and region2 are single contiguous genomic ranges along the first and second axes of the contact matrix. This mirrors the global slice indexing interface of the matrix selector sel[a:b, c:d], where the only difference is that the genomic range syntax cannot cross chromosome boundaries. If region2 is not provided, it is taken to be the same as region1. That means that sel.fetch('chr2:10M-20M') returns the same result as sel.fetch('chr2:10M-20M', 'chr2:10M-20M'). As a single rectangular window, queries like sel.fetch('chr2', 'chr3') will return inter-chromosomal values and not intra-chromosomal ones.

>>> c.matrix(balance=False)[1000:1005, 1000:1005]
array([[120022, 34107, 17335, 14053, 4137],
 [34107, 73396, 47427, 16125, 3642],
 [17335, 47427, 80458, 25105, 5394],
 [14053, 16125, 25105, 104536, 27214],
 [4137, 3642, 5394, 27214, 114135]])

>>> matrix = c.matrix(sparse=True, balance=False)
>>> matrix
<cooler.core.RangeSelector2D at 0x7fdb2e245908>

>>> matrix[:]
<3114x3114 sparse matrix of type '<class 'numpy.int64'>'
 with 8220942 stored elements in COOrdinate format>

>>> c.matrix(balance=False, as_pixels=True, join=True)[1000:1005, 1000:1005]
 chrom1 start1 end1 chrom2 start2 end2 count
0 chr5 115000000 116000000 chr5 115000000 116000000 120022
1 chr5 115000000 116000000 chr5 116000000 117000000 34107
2 chr5 115000000 116000000 chr5 117000000 118000000 17335
3 chr5 115000000 116000000 chr5 118000000 119000000 14053
4 chr5 115000000 116000000 chr5 119000000 120000000 4137
5 chr5 116000000 117000000 chr5 116000000 117000000 73396
6 chr5 116000000 117000000 chr5 117000000 118000000 47427
7 chr5 116000000 117000000 chr5 118000000 119000000 16125
8 chr5 116000000 117000000 chr5 119000000 120000000 3642
9 chr5 117000000 118000000 chr5 117000000 118000000 80458
10 chr5 117000000 118000000 chr5 118000000 119000000 25105
11 chr5 117000000 118000000 chr5 119000000 120000000 5394
12 chr5 118000000 119000000 chr5 118000000 119000000 104536
13 chr5 118000000 119000000 chr5 119000000 120000000 27214
14 chr5 119000000 120000000 chr5 119000000 120000000 114135

>>> A1 = c.matrix().fetch('chr1')
>>> A2 = c.matrix().fetch('chr3:10,000,000-20,000,000')
>>> A3 = c.matrix().fetch(('chr3', 10000000, 20000000))
>>> A4 = c.matrix().fetch('chr2', 'chr3')
>>> A5 = c.matrix().fetch('chr3:10M-20M', 'chr3:35M-40M')

Dask

Dask data structures provide a way to manipulate and distribute computations on larger-than-memory data using familiar APIs.
The experimental read_table function can be used to generate a dask dataframe backed by the pixel table of a cooler as follows:

>>> from cooler.sandbox.dask import read_table
>>> df = daskify(c.filename, 'pixels')

>>> df
Dask DataFrame Structure:
 bin1_id bin2_id count
npartitions=223
0 int64 int64 int64
9999999
...
2219999999
2220472929
Dask Name: daskify, 223 tasks

>>> df = cooler.annotate(df, c.bins(), replace=False)
>>> df
Dask DataFrame Structure:
 chrom1 start1 end1 weight1 chrom2 start2 end2 weight2 bin1_id bin2_id count
npartitions=31
None object int64 int64 float64 object int64 int64 float64 int64 int64 int64
None
...
None
None
Dask Name: getitem, 125 tasks

>>> df = df[df.chrom1 == df.chrom2]
>>> grouped = df.groupby(df.bin2_id - df.bin1_id)
>>> x = grouped['count'].sum()
>>> x
Dask Series Structure:
npartitions=1
None int64
None ...
Name: count, dtype: int64
Dask Name: series-groupby-sum-agg, 378 tasks

>>> x.compute()
0 476155231
1 284724453
2 139952477
3 96520218
4 71962080
5 56085850
6 45176881
7 37274367
8 31328555
9 26781986
10 23212616
11 20366934
12 18066135
13 16159826
14 14584058
15 13249443
16 12117854
17 11149845
...

Learn more about the Dask [https://dask.org/] project.

Create a scool file

The creation of a single-cell cooler file is similar to a regular cooler file. Each cell needs to have a name, bin table and a pixel table.
All cells must have the same dimensions, and the bins and pixels needs to be provided as two dicts with the cell names as keys.

>>> name_pixel_dict = {'cell1': pixels_cell1, 'cell2': pixels_cell2, 'cell3': pixels_cell3}
>>> name_bins_dict = {'cell1': bins_cell1, 'cell2': bins_cell2, 'cell3': bins_cell3}
>>> cooler.create_scool('single_cell_cool.scool', name_bins_dict, name_pixel_dict)

To read the content, each individual cell must be handled as a regular cool file.

>> content_of_scool = cooler.fileops.list_coolers('single_cell_cool.scool')
['/', '/cells/cell1', '/cells/cell2', '/cells/cell3']
>>> c1 = cooler.Cooler('single_cell_cool.scool::cells/cell1')
>>> c2 = cooler.Cooler('single_cell_cool.scool::cells/cell2')
>>> c3 = cooler.Cooler('single_cell_cool.scool::cells/cell3')

Schema

	Schema Version

	3

The following document describes a compressed sparse row (CSR) [https://en.wikipedia.org/wiki/Sparse_matrix#Compressed_sparse_row_.28CSR.2C_CRS_or_Yale_format.29] storage scheme for a matrix (i.e., a quantitative heatmap) with genomically labeled dimensions/axes.

HDF5 does not natively implement sparse arrays or relational data structures: its datasets are dense multidimensional arrays. We implement tables and sparse array indexes in HDF5 using groups of 1D arrays. The descriptions of tables and indexes in this document specify required groups and arrays, conventional column orders, and default data types.

Summary of changes

	Version 3 introduces the storage-mode metadata attribute to accomodate square matrices that are non-symmetric. Version 2 files which lack the storage-mode attribute should be interpreted as using the “symmetric-upper” storage mode. See Storage mode.

	The multi-resolution cooler file layout has been standardized. See File flavors.

Data collection

We refer to the object hierarchy describing a single matrix as a cooler data collection. A cooler data collection consists of tables, indexes and metadata describing a genomically-labelled sparse matrix.

A typical data collection has the following structure. At the top level, there are four HDF5 Groups [http://docs.h5py.org/en/stable/high/group.html], each containing 1D arrays (HDF5 Datasets [http://docs.h5py.org/en/stable/high/dataset.html]). The depiction below shows an example group hierarchy as a tree, with arrays at the leaves, printed with their shapes in parentheses and their data type symbols.

/
 ├── chroms
 │ ├── length (24,) int32
 │ └── name (24,) |S64
 ├── bins
 │ ├── chrom (3088281,) int32
 │ ├── start (3088281,) int32
 │ ├── end (3088281,) int32
 │ └── weight (3088281,) float64
 ├── pixels
 │ ├── bin1_id (271958554,) int64
 │ ├── bin2_id (271958554,) int64
 │ └── count (271958554,) int32
 └── indexes
 ├── bin1_offset (3088282,) int64
 └── chrom_offset (25,) int64

URI syntax

We identify a cooler data collection using a URI string to its top-level group, separating the system path to the container file from the group path within the container file by a double colon ::.

path/to/container.cool::/path/to/cooler/group

For any URI, the leading slash after the :: may be omitted. To reference the root group /, the entire ::/ suffix may be omitted (i.e., just a file path).

Tables

A table is a group of equal-length 1D arrays representing columns.

Additional groups and tables may be added to a data collection as long as they are not nested under the group of another table.

This storage mode does not enforce specific column orders, but conventional orders for required columns is provided in the listings below.

This storage mode does not set limits on the number or length of columns. Additional arrays may be inserted into a table to form new columns, but they must conform to the common length of the table.

The table descriptions below are given in the datashape [http://datashape.readthedocs.org/en/latest/] layout language. The column data types are given as numpy equivalents. They are only defaults and may be altered as desired.

GZIP is chosen as the default compression filter for all columns. This is for portability reasons, since all versions of the HDF5 library ship with it.

chroms

chroms: {
 # REQUIRED
 name: typevar['Nchroms'] * string['ascii'],
 length: typevar['Nchroms'] * int32
}

In HDF5, name is a null-padded, fixed-length ASCII array, which maps to numpy’s S dtype.

bins

bins: {
 # REQUIRED
 chrom: typevar['Nbins'] * categorical[typevar['name'], type=string, ordered=True],
 start: typevar['Nbins'] * int32,
 end: typevar['Nbins'] * int32,

 # RESERVED
 weight: typevar['Nbins'] * float64
}

In HDF5, we use the integer-backed ENUM type to encode the chrom column. For data collections with a very large number of scaffolds, the ENUM type information may be too large to fit in the object’s metadata header. In that case, the chrom column is stored using raw integers and the enumeration is inferred from the chrom table.

Genomic intervals are stored using a 0-start, half-open [http://genome.ucsc.edu/blog/the-ucsc-genome-browser-coordinate-counting-systems] representation. The first interval in a scaffold should have start = 0 and the last interval should have end = the chromosome length. Intervals are sorted by chrom, then by start.

Because they measure the same quantity in the same units, the coordinate columns chroms/length, bins/start and bins/end should be encoded using the same data type.

The cooler balance command stores balancing weights in a column called weight by default. NaN values indicate genomic bins that were blacklisted during the balancing procedure.

pixels

pixels: {
 # REQUIRED
 bin1_id: typevar['Nnz'] * int64,
 bin2_id: typevar['Nnz'] * int64,

 # RESERVED
 count: typevar['Nnz'] * int32
}

In the matrix coordinate system, bin1_id refers to the ith axis and bin2_id refers to the jth. Bin IDs are zero-based, i.e. we start counting at 0. Pixels are sorted by bin1_id then by bin2_id.

The count column is integer by default, but floating point types can be substituted. Additional columns are to be interpreted as supplementary value columns.

Warning

float16 [https://github.com/hetio/hetio/pull/15] has limited support from 3rd party libraries and is not recommended. For floating point value columns consider using either single- (float32) or double-precision (float64).

Indexes

Indexes are stored as 1D arrays in a separate group called indexes. They can be thought of as run-length encodings of the bins/chrom and pixels/bin1_id columns, respectively. Both arrays are required.

indexes: {
 chrom_offset: (typevar['Nchroms'] + 1) * int64,
 bin1_offset: (typevar['Nbins'] + 1) * int64
}

	chrom_offset: indicates which row in the bin table each chromosome first appears. The last element stores the length of the bin table.

	bin1_offset: indicates which row in the pixel table each bin1 ID first appears. The last element stores the length of the pixel table. This index is usually called indptr in CSR data structures.

Storage mode

Storing a symmetric matrix requires only the upper triangular part, including the diagonal, since the remaining elements can be reconstructed from the former ones. To indicate the use of this mode of matrix storage to client software, the value of the metadata attribute storage-mode must be set to "symmetric-upper" (see Metadata).

New in version 3: To indicate the absence of a special storage mode, e.g. for non-symmetric matrices, storage-mode must be set to "square". This storage mode indicates to client software that 2D range queries should not be symmetrized.

Warning

In schema v2 and earlier, the symmetric-upper storage mode is always assumed.

Metadata

Essential key-value properties are stored as HDF5 attributes [http://docs.h5py.org/en/stable/high/attr.html] at the top-level group of the data collection. Note that depending on where the data collection is located in the file, this can be different from the root group of the entire file /.

Required attributes

	
format : string (constant)

	“HDF5::Cooler”

	
format-version : int

	The schema version used.

	
bin-type : { "fixed", "variable" }

	Indicates whether the resolution is constant along both axes.

	
bin-size : int or "null"

	Size of genomic bins in base pairs if bin-type is “fixed”. Otherwise, “null”.

	
storage-mode : { "symmetric-upper", "square" }

	Indicates whether ordinary sparse matrix encoding is used (“square”) or whether a symmetric matrix is encoded by storing only the upper triangular elements (“symmetric-upper”).

Reserved, but optional

	
assembly : string

	Name of the genome assembly, e.g. “hg19”.

	
generated-by : string

	Agent that created the file, e.g. “cooler-x.y.z”.

	
creation-date : datetime string

	The moment the collection was created.

	
metadata : JSON

	Arbitrary JSON-compatible user metadata about the experiment.

All scalar string attributes, including serialized JSON, must be stored as variable-length UTF-8 encoded strings.

Warning

When assigning scalar string attributes in Python 2, always store values having unicode type. In h5py, assigning a Python text string (Python 3 str or Python 2 unicode) to an HDF5 attribute results in variable-length UTF-8 storage.

Additional metadata may be stored in other top-level attributes and the attributes of table groups and columns.

File flavors

Many cooler data collections can be stored in a single file. We recognize two conventional layouts:

Single-resolution

	A single-resolution cooler file that contains a single data collection under the / group. Conventional file extension: .cool.

XYZ.1000.cool
/
 ├── bins
 ├── chroms
 ├── pixels
 └── indexes

Multi-resolution

	A multi-resolution cooler file that contains multiple “coarsened” resolutions or “zoom-levels” derived from the same dataset. Multires cooler files should store each data collection underneath a group called /resolutions within a sub-group whose name is the bin size (e.g, XYZ.1000.mcool::resolutions/10000). If the base cooler has variable-length bins, then use 1 to designate the base resolution, and the use coarsening multiplier (e.g. 2, 4, 8, etc.) to name the lower resolutions. Conventional file extension: .mcool.

XYZ.1000.mcool
/
 └── resolutions
 ├── 1000
 │ ├── bins
 │ ├── chroms
 │ ├── pixels
 │ └── indexes
 ├── 2000
 │ ├── bins
 │ ├── chroms
 │ ├── pixels
 │ └── indexes
 ├── 5000
 │ ├── bins
 │ ├── chroms
 │ ├── pixels
 │ └── indexes
 ├── 10000
 │ ├── bins
 │ ├── chroms
 │ ├── pixels
 │ └── indexes
 .
 .
 .

In addition, a multi-resolution cooler file may indicate to clients that it is using this layout with the following /-level attributes:

	
format : string (constant)

	“HDF5::MCOOL”

	
format-version : int

	2

	
bin-type : { "fixed", "variable" }

	Indicates whether the resolution is constant along both axes.

Note

The old multi-resolution layout used resolutions strictly in increments of powers of 2. In this layout (MCOOL version 2), the data collections are named by zoom level, starting with XYZ.1000.mcool::0 being the coarsest resolution up until the finest or “base” resolution (e.g., XYZ.1000.mcool::14 for 14 levels of coarsening).

Changed in version 0.8: Both the legacy layout and the new mcool layout are supported by HiGlass [http://higlass.io/app/]. Prior to cooler 0.8, the new layout was produced only when requesting a specific list of resolutions. As of cooler 0.8, the new layout is always produced by the cooler zoomify command unless the --legacy option is given. Files produced by cooler.zoomify_cooler(), hic2cool [https://github.com/4dn-dcic/hic2cool/], and the mcools from the 4DN data portal [https://data.4dnucleome.org/] also follow the new layout.

Single-cell (single-resolution)

A single-cell cooler file contains all the matrices of a single-cell Hi-C data set. All cells are stored under a group called /cells, and all cells share the primary bin table columns
i.e. bins['chrom'], bins['start'] and bins['end'] which are hardlinked [http://docs.h5py.org/en/stable/high/group.html#hard-links] to the root-level bin table. Any individual cell can be accessed using the regular cooler.Cooler interface.
Conventional file extension: .scool.

XYZ.scool
/
 ├── bins
 ├── chroms
 └── cells
 ├── cell_id1
 │ ├── bins
 │ ├── chroms
 │ ├── pixels
 │ └── indexes
 ├── cell_id2
 │ ├── bins
 │ ├── chroms
 │ ├── pixels
 │ └── indexes
 ├── cell_id3
 │ ├── bins
 │ ├── chroms
 │ ├── pixels
 │ └── indexes
 ├── cell_id4
 │ ├── bins
 │ ├── chroms
 │ ├── pixels
 │ └── indexes
 .
 .
 .

In addition, a single-cell single-resolution cooler file may indicate to clients that it is using this layout with the following /-level attributes:

	
format : string (constant)

	“HDF5::SCOOL”

	
format-version : int

	1

	
bin-type : { "fixed", "variable" }

	Indicates whether the resolution is constant along both axes.

	
bin-size : int

	The bin resolution

	
nbins : int

	The number of bins

	
nchroms : int

	The number of chromosomes of the cells

	
ncells : int

	The number of stored cells

Previous schema versions

	v1

	v2

API Reference

Quick reference

Cooler class

	cooler.Cooler(store[, root])

	A convenient interface to a cooler data collection.

	cooler.Cooler.binsize

	Resolution in base pairs if uniform else None

	cooler.Cooler.chromnames

	List of reference sequence names

	cooler.Cooler.chromsizes

	Ordered mapping of reference sequences to their lengths in bp

	cooler.Cooler.bins(**kwargs)

	Bin table selector

	cooler.Cooler.pixels([join])

	Pixel table selector

	cooler.Cooler.matrix([field, balance, …])

	Contact matrix selector

	cooler.Cooler.open([mode])

	Open the HDF5 group containing the Cooler with h5py

	cooler.Cooler.info

	File information and metadata

	cooler.Cooler.offset(region)

	Bin ID containing the left end of a genomic region

	cooler.Cooler.extent(region)

	Bin IDs containing the left and right ends of a genomic region

Creation/reduction

	cooler.create_cooler(cool_uri, bins, pixels)

	Create a cooler from bins and pixels at the specified URI.

	cooler.merge_coolers(output_uri, input_uris, …)

	Merge multiple coolers with identical axes.

	cooler.coarsen_cooler(base_uri, output_uri, …)

	Coarsen a cooler to a lower resolution by an integer factor k.

	cooler.zoomify_cooler(base_uris, outfile, …)

	Generate multiple cooler resolutions by recursive coarsening.

	cooler.create_scool(cool_uri, bins, …[, …])

	Create a single-cell (scool) file.

Manipulation

	cooler.annotate(pixels, bins[, replace])

	Add bin annotations to a data frame of pixels.

	cooler.balance_cooler(clr[, chunksize, map, …])

	Iterative correction or matrix balancing of a sparse Hi-C contact map in Cooler HDF5 format.

	cooler.rename_chroms(clr, rename_dict[, h5opts])

	Substitute existing chromosome/contig names for new ones.

File operations

	cooler.fileops.is_cooler(uri)

	Determine if a URI string references a cooler data collection.

	cooler.fileops.is_multires_file(filepath[, …])

	Determine if a file is a multi-res cooler file.

	cooler.fileops.list_coolers(filepath)

	List group paths to all cooler data collections in a file.

	cooler.fileops.cp(src_uri, dst_uri[, overwrite])

	Copy a group or dataset from one file to another or within the same file.

	cooler.fileops.mv(src_uri, dst_uri[, overwrite])

	Rename a group or dataset within the same file.

	cooler.fileops.ln(src_uri, dst_uri[, soft, …])

	Create a hard link to a group or dataset in the same file.

Sandbox

	cooler.sandbox.dask.read_table

	

cooler

	
class cooler.Cooler(store, root=None, **kwargs)

	A convenient interface to a cooler data collection.

	Parameters

	
	store (str, h5py.File or h5py.Group) – Path to a cooler file, URI string, or open handle to the root HDF5
group of a cooler data collection.

	root (str, optional [deprecated]) – HDF5 Group path to root of cooler group if store is a file.
This option is deprecated. Instead, use a URI string of the form
<file_path>::<group_path>.

	kwargs (optional) – Options to be passed to h5py.File() upon every access.
By default, the file is opened with the default driver and mode=’r’.

Notes

If store is a file path, the file will be opened temporarily in
when performing operations. This allows Cooler objects to be
serialized for multiprocess and distributed computations.

Metadata is accessible as a dictionary through the info
property.

Table selectors, created using chroms(), bins(), and
pixels(), perform range queries over table rows,
returning pd.DataFrame and pd.Series.

A matrix selector, created using matrix(), performs 2D matrix
range queries, returning numpy.ndarray or
scipy.sparse.coo_matrix.

	
bins(**kwargs)

	Bin table selector

	Returns

	Table selector

	
binsize

	Resolution in base pairs if uniform else None

	
chromnames

	List of reference sequence names

	
chroms(**kwargs)

	Chromosome table selector

	Returns

	Table selector

	
chromsizes

	Ordered mapping of reference sequences to their lengths in bp

	
extent(region)

	Bin IDs containing the left and right ends of a genomic region

	Parameters

	region (str or tuple) – Genomic range

	Returns

	2-tuple of ints

Examples

>>> c.extent('chr3') # doctest: +SKIP
(1311, 2131)

	
info

	File information and metadata

	Returns

	dict

	
matrix(field=None, balance=True, sparse=False, as_pixels=False, join=False, ignore_index=True, divisive_weights=None, max_chunk=500000000)

	Contact matrix selector

	Parameters

	
	field (str, optional) – Which column of the pixel table to fill the matrix with. By
default, the ‘count’ column is used.

	balance (bool, optional) – Whether to apply pre-calculated matrix balancing weights to the
selection. Default is True and uses a column named ‘weight’.
Alternatively, pass the name of the bin table column containing
the desired balancing weights. Set to False to return untransformed
counts.

	sparse (bool, optional) – Return a scipy.sparse.coo_matrix instead of a dense 2D numpy array.

	as_pixels (bool, optional) – Return a DataFrame of the corresponding rows from the pixel table
instead of a rectangular sparse matrix. False by default.

	join (bool, optional) – If requesting pixels, specifies whether to expand the bin ID
columns into (chrom, start, end). Has no effect when requesting a
rectangular matrix. Default is True.

	ignore_index (bool, optional) – If requesting pixels, don’t populate the index column with the
pixel IDs to improve performance. Default is True.

	divisive_weights (bool, optional) – Force balancing weights to be interpreted as divisive (True) or
multiplicative (False). Weights are always assumed to be
multiplicative by default unless named KR, VC or SQRT_VC, in which
case they are assumed to be divisive by default.

	Returns

	Matrix selector

Notes

If as_pixels=True, only data explicitly stored in the pixel table
will be returned: if the cooler’s storage mode is symmetric-upper,
lower triangular elements will not be generated. If
as_pixels=False, those missing non-zero elements will
automatically be filled in.

	
offset(region)

	Bin ID containing the left end of a genomic region

	Parameters

	region (str or tuple) – Genomic range

	Returns

	int

Examples

>>> c.offset('chr3') # doctest: +SKIP
1311

	
open(mode='r', **kwargs)

	Open the HDF5 group containing the Cooler with h5py

Functions as a context manager. Any open_kws passed during
construction are ignored.

	Parameters

	mode (str, optional [default: 'r']) –
	'r' (readonly)

	'r+' or 'a' (read/write)

Notes

For other parameters, see h5py.File.

	
pixels(join=False, **kwargs)

	Pixel table selector

	Parameters

	join (bool, optional) – Whether to expand bin ID columns into chrom, start, and end
columns. Default is False.

	Returns

	Table selector

	
storage_mode

	Indicates whether ordinary sparse matrix encoding is used
("square") or whether a symmetric matrix is encoded by storing only
the upper triangular elements ("symmetric-upper").

	
cooler.annotate(pixels, bins, replace=False)

	Add bin annotations to a data frame of pixels.

This is done by performing a relational “join” against the bin IDs of a
table that describes properties of the genomic bins. New columns will be
appended on the left of the output data frame.

Changed in version 0.8.0: The default value of replace changed to False.

	Parameters

	
	pixels (DataFrame) – A data frame containing columns named bin1_id and/or bin2_id.
If columns bin1_id and bin2_id are both present in pixels,
the adjoined columns will be suffixed with ‘1’ and ‘2’ accordingly.

	bins (DataFrame or DataFrame selector) – Data structure that contains a full description of the genomic bins of
the contact matrix, where the index corresponds to bin IDs.

	replace (bool, optional) – Remove the original bin1_id and bin2_id columns from the
output. Default is False.

	Returns

	DataFrame

	
cooler.create_cooler(cool_uri, bins, pixels, columns=None, dtypes=None, metadata=None, assembly=None, ordered=False, symmetric_upper=True, mode='w', mergebuf=20000000, delete_temp=True, temp_dir=None, max_merge=200, boundscheck=True, dupcheck=True, triucheck=True, ensure_sorted=False, h5opts=None, lock=None)

	Create a cooler from bins and pixels at the specified URI.

Because the number of pixels is often very large, the input pixels are
normally provided as an iterable (e.g., an iterator or generator) of
DataFrame chunks that fit in memory.

New in version 0.8.0.

	Parameters

	
	cool_uri (str) – Path to cooler file or URI string. If the file does not exist,
it will be created.

	bins (pandas.DataFrame) – Segmentation of the chromosomes into genomic bins as a BED-like
DataFrame with columns chrom, start and end. May contain
additional columns.

	pixels (DataFrame, dictionary, or iterable of either) – A table, given as a dataframe or a column-oriented dict, containing
columns labeled bin1_id, bin2_id and count, sorted by
(bin1_id, bin2_id). If additional columns are included in the
pixel table, their names and dtypes must be specified using the
columns and dtypes arguments. For larger input data, an
iterable can be provided that yields the pixel data as a sequence
of chunks. If the input is a dask DataFrame, it will also be processed
one chunk at a time.

	columns (sequence of str, optional) – Customize which value columns from the input pixels to store in the
cooler. Non-standard value columns will be given dtype float64
unless overriden using the dtypes argument. If None, we only
attempt to store a value column named "count".

	dtypes (dict, optional) – Dictionary mapping column names to dtypes. Can be used to override the
default dtypes of bin1_id, bin2_id or count or assign
dtypes to custom value columns. Non-standard value columns given in
dtypes must also be provided in the columns argument or they
will be ignored.

	metadata (dict, optional) – Experiment metadata to store in the file. Must be JSON compatible.

	assembly (str, optional) – Name of genome assembly.

	ordered (bool, optional [default: False]) – If the input chunks of pixels are provided with correct triangularity
and in ascending order of (bin1_id, bin2_id), set this to
True to write the cooler in one step.
If False (default), we create the cooler in two steps using an
external sort mechanism. See Notes for more details.

	symmetric_upper (bool, optional [default: True]) – If True, sets the file’s storage-mode property to symmetric-upper:
use this only if the input data references the upper triangle of a
symmetric matrix! For all other cases, set this option to False.

	mode ({'w' , 'a'}, optional [default: 'w']) – Write mode for the output file. ‘a’: if the output file exists, append
the new cooler to it. ‘w’: if the output file exists, it will be
truncated. Default is ‘w’.

	Other Parameters

	
	mergebuf (int, optional) – Maximum number of records to buffer in memory at any give time during
the merge step.

	delete_temp (bool, optional) – Whether to delete temporary files when finished.
Useful for debugging. Default is False.

	temp_dir (str, optional) – Create temporary files in a specified directory instead of the same
directory as the output file. Pass - to use the system default.

	max_merge (int, optional) – If merging more than max_merge chunks, do the merge recursively in
two passes.

	h5opts (dict, optional) – HDF5 dataset filter options to use (compression, shuffling,
checksumming, etc.). Default is to use autochunking and GZIP
compression, level 6.

	lock (multiprocessing.Lock, optional) – Optional lock to control concurrent access to the output file.

	ensure_sorted (bool, optional) – Ensure that each input chunk is properly sorted.

	boundscheck (bool, optional) – Input validation: Check that all bin IDs lie in the expected range.

	dupcheck (bool, optional) – Input validation: Check that no duplicate pixels exist within any chunk.

	triucheck (bool, optional) – Input validation: Check that bin1_id <= bin2_id when creating
coolers in symmetric-upper mode.

See also

cooler.create_scool(), cooler.create.sanitize_records(), cooler.create.sanitize_pixels()

Notes

If the pixel chunks are provided in the correct order required for the
output to be properly sorted, then the cooler can be created in a single
step by setting ordered=True.

If not, the cooler is created in two steps via an external sort mechanism.
In the first pass, the sequence of pixel chunks are processed and sorted in
memory and saved to temporary coolers. In the second pass, the temporary
coolers are merged into the output file. This way the individual chunks do
not need to be provided in any particular order. When ordered=False,
the following options for the merge step are available: mergebuf,
delete_temp, temp_dir, max_merge.

Each chunk of pixels will go through a validation pipeline, which can be
customized with the following options: boundscheck, triucheck,
dupcheck, ensure_sorted.

	
cooler.merge_coolers(output_uri, input_uris, mergebuf, columns=None, dtypes=None, agg=None, **kwargs)

	Merge multiple coolers with identical axes.

The merged cooler is stored at output_uri.

New in version 0.8.0.

	Parameters

	
	output_uri (str) – Output cooler file path or URI.

	input_uris (list of str) – List of input file path or URIs of coolers to combine.

	mergebuf (int) – Maximum number of pixels processed at a time.

	columns (list of str, optional) – Specify which pixel value columns to include in the aggregation.
Default is to use all available value columns.

	dtypes (dict, optional) – Specific dtypes to use for value columns. Default is to propagate
the current dtypes of the value columns.

	agg (dict, optional) – Functions to use for aggregating each value column. Pass the same kind
of dict accepted by pandas.DataFrame.groupby.agg. Default is to
apply ‘sum’ to every value column.

	kwargs – Passed to cooler.create.

Notes

The default output file mode is ‘w’. If appending output to an existing
file, pass mode=’a’.

See also

cooler.coarsen_cooler(), cooler.zoomify_cooler()

	
cooler.coarsen_cooler(base_uri, output_uri, factor, chunksize, nproc=1, columns=None, dtypes=None, agg=None, **kwargs)

	Coarsen a cooler to a lower resolution by an integer factor k.

This is done by pooling k-by-k neighborhoods of pixels and aggregating.
Each chromosomal block is coarsened individually. Result is a coarsened
cooler stored at output_uri.

New in version 0.8.0.

	Parameters

	
	base_uri (str) – Input cooler file path or URI.

	output_uri (str) – Input cooler file path or URI.

	factor (int) – Coarsening factor.

	chunksize (int) – Number of pixels processed at a time per worker.

	nproc (int, optional) – Number of workers for batch processing of pixels. Default is 1,
i.e. no process pool.

	columns (list of str, optional) – Specify which pixel value columns to include in the aggregation.
Default is to use all available value columns.

	dtypes (dict, optional) – Specific dtypes to use for value columns. Default is to propagate
the current dtypes of the value columns.

	agg (dict, optional) – Functions to use for aggregating each value column. Pass the same kind
of dict accepted by pandas.DataFrame.groupby.agg. Default is to
apply ‘sum’ to every value column.

	kwargs – Passed to cooler.create.

See also

cooler.zoomify_cooler(), cooler.merge_coolers()

	
cooler.zoomify_cooler(base_uris, outfile, resolutions, chunksize, nproc=1, columns=None, dtypes=None, agg=None, **kwargs)

	Generate multiple cooler resolutions by recursive coarsening.

Result is a “zoomified” or “multires” cool file stored at outfile
using the MCOOL v2 layout, where coolers are stored under a hierarchy of
the form resolutions/<r> for each resolution r.

New in version 0.8.0.

	Parameters

	
	base_uris (str or sequence of str) – One or more cooler URIs to use as “base resolutions” for aggregation.

	outfile (str) – Output multires cooler (mcool) file path.

	resolutions (list of int) – A list of target resolutions to generate.

	chunksize (int) – Number of pixels processed at a time per worker.

	nproc (int, optional) – Number of workers for batch processing of pixels. Default is 1,
i.e. no process pool.

	columns (list of str, optional) – Specify which pixel value columns to include in the aggregation.
Default is to use only the column named ‘count’ if it exists.

	dtypes (dict, optional) – Specific dtypes to use for value columns. Default is to propagate
the current dtypes of the value columns.

	agg (dict, optional) – Functions to use for aggregating each value column. Pass the same kind
of dict accepted by pandas.DataFrame.groupby.agg. Default is to
apply ‘sum’ to every value column.

	kwargs – Passed to cooler.create.

See also

cooler.coarsen_cooler(), cooler.merge_coolers()

	
cooler.balance_cooler(clr, chunksize=None, map=<class 'map'>, tol=1e-05, min_nnz=0, min_count=0, mad_max=0, cis_only=False, trans_only=False, ignore_diags=False, max_iters=200, rescale_marginals=True, use_lock=False, blacklist=None, x0=None, store=False, store_name='weight')

	Iterative correction or matrix balancing of a sparse Hi-C contact map in
Cooler HDF5 format.

	Parameters

	
	clr (cooler.Cooler) – Cooler object

	chunksize (int, optional) – Split the contact matrix pixel records into equally sized chunks to
save memory and/or parallelize. Default is to use all the pixels at
once.

	map (callable, optional) – Map function to dispatch the matrix chunks to workers.
Default is the builtin map, but alternatives include parallel map
implementations from a multiprocessing pool.

	tol (float, optional) – Convergence criterion is the variance of the marginal (row/col) sum
vector.

	min_nnz (int, optional) – Pre-processing bin-level filter. Drop bins with fewer nonzero elements
than this value.

	min_count (int, optional) – Pre-processing bin-level filter. Drop bins with lower marginal sum than
this value.

	mad_max (int, optional) – Pre-processing bin-level filter. Drop bins whose log marginal sum is
less than mad_max median absolute deviations below the median log
marginal sum.

	cis_only (bool, optional) – Do iterative correction on intra-chromosomal data only.
Inter-chromosomal data is ignored.

	trans_only (bool, optional) – Do iterative correction on inter-chromosomal data only.
Intra-chromosomal data is ignored.

	blacklist (list or 1D array, optional) – An explicit list of IDs of bad bins to filter out when performing
balancing.

	ignore_diags (int or False, optional) – Drop elements occurring on the first ignore_diags diagonals of the
matrix (including the main diagonal).

	max_iters (int, optional) – Iteration limit.

	rescale_marginals (bool, optional) – Normalize the balancing weights such that the balanced matrix has rows
/ columns that sum to 1.0. The scale factor is stored in the stats
output dictionary.

	x0 (1D array, optional) – Initial weight vector to use. Default is to start with ones(n_bins).

	store (bool, optional) – Whether to store the results in the file when finished. Default is
False.

	store_name (str, optional) – Name of the column of the bin table to save to. Default name is
‘weight’.

	Returns

	
	bias (1D array, whose shape is the number of bins in h5.) – Vector of bin bias weights to normalize the observed contact map.
Dropped bins will be assigned the value NaN.
N[i, j] = O[i, j] * bias[i] * bias[j]

	stats (dict) – Summary of parameters used to perform balancing and the average
magnitude of the corrected matrix’s marginal sum at convergence.

	
cooler.rename_chroms(clr, rename_dict, h5opts=None)

	Substitute existing chromosome/contig names for new ones. They will be
written to the file and the Cooler object will be refreshed.

	Parameters

	
	clr (Cooler) – Cooler object that can be opened with write permissions.

	rename_dict (dict) – Dictionary of old -> new chromosome names. Any names omitted from
the dictionary will be kept as is.

	h5opts (dict, optional) – HDF5 filter options.

	
cooler.create_scool(cool_uri, bins, cell_name_pixels_dict, columns=None, dtypes=None, metadata=None, assembly=None, ordered=False, symmetric_upper=True, mode='w', mergebuf=20000000, delete_temp=True, temp_dir=None, max_merge=200, boundscheck=True, dupcheck=True, triucheck=True, ensure_sorted=False, h5opts=None, lock=None, **kwargs)

	Create a single-cell (scool) file.

For each cell store a cooler matrix under /cells, where all matrices
have the same dimensions.

Each cell is a regular cooler data collection, so the input must be a
bin table and pixel table for each cell. The pixel tables are provided as
a dictionary where the key is a unique cell name. The bin tables can be
provided as a dict with the same keys or a single common bin table can be
given.

New in version 0.8.9.

	Parameters

	
	cool_uri (str) – Path to scool file or URI string. If the file does not exist,
it will be created.

	bins (pandas.DataFrame or Dict[str, DataFrame]) – A single bin table or dictionary of cell names to bins tables. A bin
table is a dataframe with columns chrom, start and end.
May contain additional columns.

	cell_name_pixels_dict (Dict[str, DataFrame]) – Cell name as key and pixel table DataFrame as value.
A table, given as a dataframe or a column-oriented dict, containing
columns labeled bin1_id, bin2_id and count, sorted by
(bin1_id, bin2_id). If additional columns are included in the
pixel table, their names and dtypes must be specified using the
columns and dtypes arguments. For larger input data, an
iterable can be provided that yields the pixel data as a sequence
of chunks. If the input is a dask DataFrame, it will also be processed
one chunk at a time.

	columns (sequence of str, optional) – Customize which value columns from the input pixels to store in the
cooler. Non-standard value columns will be given dtype float64
unless overriden using the dtypes argument. If None, we only
attempt to store a value column named "count".

	dtypes (dict, optional) – Dictionary mapping column names to dtypes. Can be used to override the
default dtypes of bin1_id, bin2_id or count or assign
dtypes to custom value columns. Non-standard value columns given in
dtypes must also be provided in the columns argument or they
will be ignored.

	metadata (dict, optional) – Experiment metadata to store in the file. Must be JSON compatible.

	assembly (str, optional) – Name of genome assembly.

	ordered (bool, optional [default: False]) – If the input chunks of pixels are provided with correct triangularity
and in ascending order of (bin1_id, bin2_id), set this to
True to write the cooler in one step.
If False (default), we create the cooler in two steps using an
external sort mechanism. See Notes for more details.

	symmetric_upper (bool, optional [default: True]) – If True, sets the file’s storage-mode property to symmetric-upper:
use this only if the input data references the upper triangle of a
symmetric matrix! For all other cases, set this option to False.

	mode ({'w' , 'a'}, optional [default: 'w']) – Write mode for the output file. ‘a’: if the output file exists, append
the new cooler to it. ‘w’: if the output file exists, it will be
truncated. Default is ‘w’.

	Other Parameters

	
	mergebuf (int, optional) – Maximum number of records to buffer in memory at any give time during
the merge step.

	delete_temp (bool, optional) – Whether to delete temporary files when finished.
Useful for debugging. Default is False.

	temp_dir (str, optional) – Create temporary files in a specified directory instead of the same
directory as the output file. Pass - to use the system default.

	max_merge (int, optional) – If merging more than max_merge chunks, do the merge recursively in
two passes.

	h5opts (dict, optional) – HDF5 dataset filter options to use (compression, shuffling,
checksumming, etc.). Default is to use autochunking and GZIP
compression, level 6.

	lock (multiprocessing.Lock, optional) – Optional lock to control concurrent access to the output file.

	ensure_sorted (bool, optional) – Ensure that each input chunk is properly sorted.

	boundscheck (bool, optional) – Input validation: Check that all bin IDs lie in the expected range.

	dupcheck (bool, optional) – Input validation: Check that no duplicate pixels exist within any chunk.

	triucheck (bool, optional) – Input validation: Check that bin1_id <= bin2_id when creating
coolers in symmetric-upper mode.

See also

cooler.create_cooler(), cooler.zoomify_cooler()

Notes

If the pixel chunks are provided in the correct order required for the
output to be properly sorted, then the cooler can be created in a single
step by setting ordered=True.

If not, the cooler is created in two steps via an external sort mechanism.
In the first pass, the sequence of pixel chunks are processed and sorted in
memory and saved to temporary coolers. In the second pass, the temporary
coolers are merged into the output file. This way the individual chunks do
not need to be provided in any particular order. When ordered=False,
the following options for the merge step are available: mergebuf,
delete_temp, temp_dir, max_merge.

Each chunk of pixels will go through a validation pipeline, which can be
customized with the following options: boundscheck, triucheck,
dupcheck, ensure_sorted.

cooler.create

	
cooler.create.sanitize_pixels(bins, **kwargs)

	Builds a function to sanitize an already-binned genomic data with
genomic bin assignments.

	Parameters

	
	bins (DataFrame) – Bin table to compare pixel records against.

	is_one_based (bool, optional) – Whether the input bin IDs are one-based, rather than zero-based.
They will be converted to zero-based.

	tril_action ('reflect', 'drop', 'raise' or None) – How to handle lower triangle (“tril”) pixels.
If set to ‘reflect’ [default], tril pixels will be flipped or
“reflected” to their mirror image: “sided” column pairs will have their
values swapped.
If set to ‘drop’, tril pixels will be discarded. This is useful if
your input data is duplexed, i.e. contains mirror duplicates of every
record.
If set to ‘raise’, an exception will be raised if any tril record is
encountered.

	bin1_field (str) – Name of the column representing ith (row) axis of the matrix.
Default is ‘bin1_id’.

	bin2_field (str) – Name of the column representing jth (col) axis of the matrix.
Default is ‘bin2_id’.

	sided_fields (sequence of str) – Base names of column pairs to swap values between when mirror-reflecting
pixels.

	suffixes (pair of str) – Suffixes used to identify pairs of sided columns. e.g.: (‘1’, ‘2’),
(‘_x’, ‘_y’), etc.

	sort (bool) – Whether to sort the output dataframe by bin_id and bin2_id.

	Returns

	callable – Function of one argument that takes a raw dataframe and returns a
sanitized dataframe.

	
cooler.create.sanitize_records(bins, schema=None, **kwargs)

	Builds a funtion to sanitize and assign bin IDs to a data frame of
paired genomic positions based on a provided genomic bin segmentation.

	Parameters

	
	bins (DataFrame) – Bin table to compare records against.

	schema (str, optional) – Use pre-defined parameters for a particular format. Any options can be
overriden via kwargs. If not provided, values for all the options below
must be given.

	decode_chroms (bool) – Convert string chromosome names to integer IDs based on the order given
in the bin table. Set to False if the chromosomes are already given as
an enumeration, starting at 0. Records with either chrom ID < 0 are
dropped.

	is_one_based (bool) – Whether the input anchor coordinates are one-based, rather than
zero-based. They will be converted to zero-based.

	tril_action ('reflect', 'drop', 'raise' or None) – How to handle lower triangle (“tril”) records.
If set to ‘reflect’, tril records will be flipped or “reflected”
to their mirror image: “sided” column pairs will have their values
swapped.
If set to ‘drop’, tril records will be discarded. This is useful if
your input data is symmetric, i.e. contains mirror duplicates of every
record.
If set to ‘raise’, an exception will be raised if any tril record is
encountered.

	chrom_field (str) – Base name of the two chromosome/scaffold/contig columns.

	anchor_field (str) – Base name of the positional anchor columns.

	sided_fields (sequence of str) – Base names of column pairs to swap values between when
mirror-reflecting records.

	suffixes (pair of str) – Suffixes used to identify pairs of sided columns. e.g.: (‘1’, ‘2’),
(‘_x’, ‘_y’), etc.

	sort (bool) – Whether to sort the output dataframe by bin_id and bin2_id.

	validate (bool) – Whether to do type- and bounds-checking on the anchor position
columns. Raises BadInputError.

	Returns

	callable – Function of one argument that takes a raw dataframe and returns a
sanitized dataframe with bin IDs assigned.

cooler.fileops

	
cooler.fileops.is_cooler(uri)

	Determine if a URI string references a cooler data collection.
Returns False if the file or group path doesn’t exist.

	
cooler.fileops.is_multires_file(filepath, min_version=1)

	Determine if a file is a multi-res cooler file.
Returns False if the file doesn’t exist.

	
cooler.fileops.list_coolers(filepath)

	List group paths to all cooler data collections in a file.

	Parameters

	filepath (str) –

	Returns

	list – Cooler group paths in the file.

	
cooler.fileops.cp(src_uri, dst_uri, overwrite=False)

	Copy a group or dataset from one file to another or within the same file.

	
cooler.fileops.mv(src_uri, dst_uri, overwrite=False)

	Rename a group or dataset within the same file.

	
cooler.fileops.ln(src_uri, dst_uri, soft=False, overwrite=False)

	Create a hard link to a group or dataset in the same file. Also
supports soft links (in the same file) or external links (different files).

cooler.util

	
cooler.util.partition(start, stop, step)

	Partition an integer interval into equally-sized subintervals.
Like builtin range(), but yields pairs of end points.

Examples

>>> for lo, hi in partition(0, 9, 2):
 print(lo, hi)
0 2
2 4
4 6
6 8
8 9

	
cooler.util.fetch_chromsizes(db, **kwargs)

	Download chromosome sizes from UCSC as a pandas.Series, indexed
by chromosome label.

	
cooler.util.read_chromsizes(filepath_or, name_patterns=('^chr[0-9]+$', '^chr[XY]$', '^chrM$'), all_names=False, **kwargs)

	Parse a <db>.chrom.sizes or <db>.chromInfo.txt file from the UCSC
database, where db is a genome assembly name.

	Parameters

	
	filepath_or (str or file-like) – Path or url to text file, or buffer.

	name_patterns (sequence, optional) – Sequence of regular expressions to capture desired sequence names.
Each corresponding set of records will be sorted in natural order.

	all_names (bool, optional) – Whether to return all contigs listed in the file. Default is
False.

	Returns

	pandas.Series – Series of integer bp lengths indexed by sequence name.

References

	UCSC assembly terminology [http://genome.ucsc.edu/FAQ/FAQdownloads.html#download9]

	GRC assembly terminology [https://www.ncbi.nlm.nih.gov/grc/help/definitions]

	
cooler.util.binnify(chromsizes, binsize)

	Divide a genome into evenly sized bins.

	Parameters

	
	chromsizes (Series) – pandas Series indexed by chromosome name with chromosome lengths in bp.

	binsize (int) – size of bins in bp

	Returns

	bins (pandas.DataFrame) – Dataframe with columns: chrom, start, end.

	
cooler.util.digest(fasta_records, enzyme)

	Divide a genome into restriction fragments.

	Parameters

	
	fasta_records (OrderedDict) – Dictionary of chromosome names to sequence records.

	enzyme (str) – Name of restriction enzyme (e.g., ‘DpnII’).

	Returns

	frags (pandas.DataFrame) – Dataframe with columns: chrom, start, end.

cooler.sandbox

CLI Reference

Quick reference

cooler [OPTIONS] COMMAND [ARGS]...

	Data ingest

	

	cooler cload

	Create a cooler from genomic point pairs and bins.

	cooler load

	Create a cooler from a pre-binned matrix.

	Reduction

	

	cooler merge

	Merge multiple coolers with identical axes.

	cooler coarsen

	Coarsen a cooler to a lower resolution.

	cooler zoomify

	Generate a multi-resolution cooler file by coarsening.

	Normalization

	

	cooler balance

	Out-of-core matrix balancing.

	Export/visualization

	

	cooler info

	Display a cooler’s info and metadata.

	cooler dump

	Dump a cooler’s data to a text stream.

	cooler show

	Display and browse a cooler with matplotlib.

	File manipulation/info

	

	cooler tree

	Display a file’s data hierarchy.

	cooler attrs

	Display a file’s attribute hierarchy.

	cooler ls

	List all coolers inside a file.

	cooler cp

	Copy a cooler from one file to another or within the same file.

	cooler mv

	Rename a cooler within the same file.

	cooler ln

	Create a hard, soft or external link to a cooler.

	Helper commands

	

	cooler makebins

	Generate fixed-width genomic bins.

	cooler digest

	Generate fragment-delimited genomic bins.

	cooler csort

	Sort and index a contact list.

Options

	
-v, --verbose

	Verbose logging.

	
-d, --debug

	On error, drop into the post-mortem debugger shell.

	
-V, --version

	Show the version and exit.

See the cooler_cli.ipynb Jupyter Notebook for specific examples on usage: (https://github.com/mirnylab/cooler-binder).

cooler cload

Create a cooler from genomic pairs and bins.

Choose a subcommand based on the format of the input contact list.

cooler cload [OPTIONS] COMMAND [ARGS]...

Commands

	
	
	
hiclib

	

	
	
	
pairix

	

	
	
	
pairs

	

	
	
	
tabix

	

cooler cload pairs

Bin any text file or stream of pairs.

Pairs data need not be sorted. Accepts compressed files.
To pipe input from stdin, set PAIRS_PATH to ‘-‘.

BINS : One of the following

<TEXT:INTEGER> : 1. Path to a chromsizes file, 2. Bin size in bp

<TEXT> : Path to BED file defining the genomic bin segmentation.

PAIRS_PATH : Path to contacts (i.e. read pairs) file.

COOL_PATH : Output COOL file path or URI.

cooler cload pairs [OPTIONS] BINS PAIRS_PATH COOL_PATH

Arguments

	
BINS

	Required argument

	
PAIRS_PATH

	Required argument

	
COOL_PATH

	Required argument

Options

	
--metadata <metadata>

	Path to JSON file containing user metadata.

	
--assembly <assembly>

	Name of genome assembly (e.g. hg19, mm10)

	
-c1, --chrom1 <chrom1>

	chrom1 field number (one-based) [required]

	
-p1, --pos1 <pos1>

	pos1 field number (one-based) [required]

	
-c2, --chrom2 <chrom2>

	chrom2 field number (one-based) [required]

	
-p2, --pos2 <pos2>

	pos2 field number (one-based) [required]

	
--chunksize <chunksize>

	Number of input lines to load at a time

	
-0, --zero-based

	Positions are zero-based [default: False]

	
--comment-char <comment_char>

	Comment character that indicates lines to ignore. [default: #]

	
-N, --no-symmetric-upper

	Create a complete square matrix without implicit symmetry. This allows for distinct upper- and lower-triangle values

	
--input-copy-status <input_copy_status>

	Copy status of input data when using symmetric-upper storage. | unique: Incoming data comes from a unique half of a symmetric map, regardless of how the coordinates of a pair are ordered. duplex: Incoming data contains upper- and lower-triangle duplicates. All input records that map to the lower triangle will be discarded! | If you wish to treat lower- and upper-triangle input data as distinct, use the --no-symmetric-upper option. [default: unique]

	
--field <field>

	Specify quantitative input fields to aggregate into value columns using the syntax --field <field-name>=<field-number>. Optionally, append : followed by dtype=<dtype> to specify the data type (e.g. float), and/or agg=<agg> to specify an aggregation function different from sum (e.g. mean). Field numbers are 1-based. Passing ‘count’ as the target name will override the default behavior of storing pair counts. Repeat the --field option for each additional field.

	
--temp-dir <temp_dir>

	Create temporary files in a specified directory. Pass - to use the platform default temp dir.

	
--no-delete-temp

	Do not delete temporary files when finished.

	
--max-merge <max_merge>

	Maximum number of chunks to merge before invoking recursive merging [default: 200]

	
--storage-options <storage_options>

	Options to modify the data filter pipeline. Provide as a comma-separated list of key-value pairs of the form ‘k1=v1,k2=v2,…’. See http://docs.h5py.org/en/stable/high/dataset.html#filter-pipeline for more details.

cooler cload pairix

Bin a pairix-indexed contact list file.

BINS : One of the following

<TEXT:INTEGER> : 1. Path to a chromsizes file, 2. Bin size in bp

<TEXT> : Path to BED file defining the genomic bin segmentation.

PAIRS_PATH : Path to contacts (i.e. read pairs) file.

COOL_PATH : Output COOL file path or URI.

See also: ‘cooler csort’ to sort and index a contact list file

Pairix on GitHub: <https://github.com/4dn-dcic/pairix>.

cooler cload pairix [OPTIONS] BINS PAIRS_PATH COOL_PATH

Arguments

	
BINS

	Required argument

	
PAIRS_PATH

	Required argument

	
COOL_PATH

	Required argument

Options

	
--metadata <metadata>

	Path to JSON file containing user metadata.

	
--assembly <assembly>

	Name of genome assembly (e.g. hg19, mm10)

	
-p, --nproc <nproc>

	Number of processes to split the work between. [default: 8]

	
-0, --zero-based

	Positions are zero-based [default: False]

	
-s, --max-split <max_split>

	Divide the pairs from each chromosome into at most this many chunks. Smaller chromosomes will be split less frequently or not at all. Increase ths value if large chromosomes dominate the workload on multiple processors. [default: 2]

cooler cload tabix

Bin a tabix-indexed contact list file.

BINS : One of the following

<TEXT:INTEGER> : 1. Path to a chromsizes file, 2. Bin size in bp

<TEXT> : Path to BED file defining the genomic bin segmentation.

PAIRS_PATH : Path to contacts (i.e. read pairs) file.

COOL_PATH : Output COOL file path or URI.

See also: ‘cooler csort’ to sort and index a contact list file

Tabix manpage: <http://www.htslib.org/doc/tabix.html>.

cooler cload tabix [OPTIONS] BINS PAIRS_PATH COOL_PATH

Arguments

	
BINS

	Required argument

	
PAIRS_PATH

	Required argument

	
COOL_PATH

	Required argument

Options

	
--metadata <metadata>

	Path to JSON file containing user metadata.

	
--assembly <assembly>

	Name of genome assembly (e.g. hg19, mm10)

	
-p, --nproc <nproc>

	Number of processes to split the work between. [default: 8]

	
-c2, --chrom2 <chrom2>

	chrom2 field number (one-based)

	
-p2, --pos2 <pos2>

	pos2 field number (one-based)

	
-0, --zero-based

	Positions are zero-based [default: False]

	
-s, --max-split <max_split>

	Divide the pairs from each chromosome into at most this many chunks. Smaller chromosomes will be split less frequently or not at all. Increase ths value if large chromosomes dominate the workload on multiple processors. [default: 2]

cooler cload hiclib

Bin a hiclib HDF5 contact list (frag) file.

BINS : One of the following

<TEXT:INTEGER> : 1. Path to a chromsizes file, 2. Bin size in bp

<TEXT> : Path to BED file defining the genomic bin segmentation.

PAIRS_PATH : Path to contacts (i.e. read pairs) file.

COOL_PATH : Output COOL file path or URI.

hiclib on BitBucket: <https://bitbucket.org/mirnylab/hiclib>.

cooler cload hiclib [OPTIONS] BINS PAIRS_PATH COOL_PATH

Arguments

	
BINS

	Required argument

	
PAIRS_PATH

	Required argument

	
COOL_PATH

	Required argument

Options

	
--metadata <metadata>

	Path to JSON file containing user metadata.

	
--assembly <assembly>

	Name of genome assembly (e.g. hg19, mm10)

	
-c, --chunksize <chunksize>

	Control the number of pixels handled by each worker process at a time. [default: 100000000]

cooler load

Create a cooler from a pre-binned matrix.

BINS_PATH : One of the following

<TEXT:INTEGER> : 1. Path to a chromsizes file, 2. Bin size in bp

<TEXT> : Path to BED file defining the genomic bin segmentation.

PIXELS_PATH : Text file containing nonzero pixel values. May be gzipped.
Pass ‘-‘ to use stdin.

COOL_PATH : Output COOL file path or URI.

Notes

Two input format options (tab-delimited).
Input pixel file may be compressed.

COO: COO-rdinate sparse matrix format (a.k.a. ijv triple).
3 columns: “bin1_id, bin2_id, count”,

BG2: 2D version of the bedGraph format.
7 columns: “chrom1, start1, end1, chrom2, start2, end2, count”

Examples

cooler load -f bg2 <chrom.sizes>:<binsize> in.bg2.gz out.cool

cooler load [OPTIONS] BINS_PATH PIXELS_PATH COOL_PATH

Arguments

	
BINS_PATH

	Required argument

	
PIXELS_PATH

	Required argument

	
COOL_PATH

	Required argument

Options

	
-f, --format <format>

	‘coo’ refers to a tab-delimited sparse triplet file (bin1, bin2, count). ‘bg2’ refers to a 2D bedGraph-like file (chrom1, start1, end1, chrom2, start2, end2, count). [required]

	
--metadata <metadata>

	Path to JSON file containing user metadata.

	
--assembly <assembly>

	Name of genome assembly (e.g. hg19, mm10)

	
--field <field>

	Add supplemental value fields or override default field numbers for the specified format. Specify quantitative input fields to aggregate into value columns using the syntax --field <field-name>=<field-number>. Optionally, append : followed by dtype=<dtype> to specify the data type (e.g. float). Field numbers are 1-based. Repeat the --field option for each additional field.

	
-c, --chunksize <chunksize>

	Size (in number of lines/records) of data chunks to read and process from the input file at a time. These chunks will be saved as temporary partial Coolers and merged at the end. Also specifies the size of the buffer during the merge step.

	
--count-as-float

	Store the ‘count’ column as floating point values instead of as integers. Can also be specified using the –field option.

	
--one-based

	Pass this flag if the bin IDs listed in a COO file are one-based instead of zero-based.

	
--comment-char <comment_char>

	Comment character that indicates lines to ignore. [default: #]

	
-N, --no-symmetric-upper

	Create a complete square matrix without implicit symmetry. This allows for distinct upper- and lower-triangle values

	
--input-copy-status <input_copy_status>

	Copy status of input data when using symmetric-upper storage. | unique: Incoming data comes from a unique half of a symmetric matrix, regardless of how element coordinates are ordered. Execution will be aborted if duplicates are detected. duplex: Incoming data contains upper- and lower-triangle duplicates. All lower-triangle input elements will be discarded! | If you wish to treat lower- and upper-triangle input data as distinct, use the --no-symmetric-upper option instead. [default: unique]

	
--storage-options <storage_options>

	Options to modify the data filter pipeline. Provide as a comma-separated list of key-value pairs of the form ‘k1=v1,k2=v2,…’. See http://docs.h5py.org/en/stable/high/dataset.html#filter-pipeline for more details.

cooler merge

Merge multiple coolers with identical axes.

OUT_PATH : Output file path or URI.

IN_PATHS : Input file paths or URIs of coolers to merge.

Notes

Data columns merged:

pixels/bin1_id, pixels/bin2_id, pixels/<value columns>

Data columns preserved:

chroms/name, chroms/length
bins/chrom, bins/start, bins/end

Additional columns in the the input files are not transferred to the output.

cooler merge [OPTIONS] OUT_PATH [IN_PATHS]...

Arguments

	
OUT_PATH

	Required argument

	
IN_PATHS

	Optional argument(s)

Options

	
-c, --chunksize <chunksize>

	Size of the merge buffer in number of pixel table rows. [default: 20000000]

	
--field <field>

	Specify the names of value columns to merge as ‘<name>’. Repeat the –field option for each one. Use ‘<name>,dtype=<dtype>’ to specify the dtype. Include ‘,agg=<agg>’ to specify an aggregation function different from ‘sum’.

cooler coarsen

Coarsen a cooler to a lower resolution.

Works by pooling k-by-k neighborhoods of pixels and aggregating.
Each chromosomal block is coarsened individually.

COOL_PATH : Path to a COOL file or Cooler URI.

cooler coarsen [OPTIONS] COOL_PATH

Arguments

	
COOL_PATH

	Required argument

Options

	
-k, --factor <factor>

	Gridding factor. The contact matrix is coarsegrained by grouping each chromosomal contact block into k-by-k element tiles [default: 2]

	
-n, -p, --nproc <nproc>

	Number of processes to use for batch processing chunks of pixels [default: 1, i.e. no process pool]

	
-c, --chunksize <chunksize>

	Number of pixels allocated to each process [default: 10000000]

	
--field <field>

	Specify the names of value columns to merge as ‘<name>’. Repeat the –field option for each one. Use ‘<name>,dtype=<dtype>’ to specify the dtype. Include ‘,agg=<agg>’ to specify an aggregation function different from ‘sum’.

	
-o, --out <out>

	Output file or URI [required]

cooler zoomify

Generate a multi-resolution cooler file by coarsening.

COOL_PATH : Path to a COOL file or Cooler URI.

cooler zoomify [OPTIONS] COOL_PATH

Arguments

	
COOL_PATH

	Required argument

Options

	
-n, -p, --nproc <nproc>

	Number of processes to use for batch processing chunks of pixels [default: 1, i.e. no process pool]

	
-c, --chunksize <chunksize>

	Number of pixels allocated to each process [default: 10000000]

	
-r, --resolutions <resolutions>

	Comma-separated list of target resolutions. Use suffixes B or N to specify a progression: B for binary (geometric steps of factor 2), N for nice (geometric steps of factor 10 interleaved with steps of 2 and 5). Examples: 1000B=1000,2000,4000,8000,… 1000N=1000,2000,5000,10000,… 5000N=5000,10000,25000,50000,… 4DN is an alias for 1000,2000,5000N [default: B]

	
--balance

	Apply balancing to each zoom level. Off by default.

	
--balance-args <balance_args>

	Additional arguments to pass to cooler balance

	
-i, --base-uri <base_uri>

	One or more additional base coolers to aggregate from, if needed.

	
-o, --out <out>

	Output file or URI

	
--field <field>

	Specify the names of value columns to merge as ‘<name>’. Repeat the –field option for each one. Use ‘<name>:dtype=<dtype>’ to specify the dtype. Include ‘,agg=<agg>’ to specify an aggregation function different from ‘sum’.

	
--legacy

	Use the legacy layout of integer-labeled zoom levels.

cooler balance

Out-of-core matrix balancing.

Matrix must be symmetric. See the help for various filtering options to
mask out poorly mapped bins.

COOL_PATH : Path to a COOL file.

cooler balance [OPTIONS] COOL_PATH

Arguments

	
COOL_PATH

	Required argument

Options

	
-p, --nproc <nproc>

	Number of processes to split the work between. [default: 8]

	
-c, --chunksize <chunksize>

	Control the number of pixels handled by each worker process at a time. [default: 10000000]

	
--mad-max <mad_max>

	Ignore bins from the contact matrix using the ‘MAD-max’ filter: bins whose log marginal sum is less than mad-max median absolute deviations below the median log marginal sum of all the bins in the same chromosome. [default: 5]

	
--min-nnz <min_nnz>

	Ignore bins from the contact matrix whose marginal number of nonzeros is less than this number. [default: 10]

	
--min-count <min_count>

	Ignore bins from the contact matrix whose marginal count is less than this number. [default: 0]

	
--blacklist <blacklist>

	Path to a 3-column BED file containing genomic regions to mask out during the balancing procedure, e.g. sequence gaps or regions of poor mappability.

	
--ignore-diags <ignore_diags>

	Number of diagonals of the contact matrix to ignore, including the main diagonal. Examples: 0 ignores nothing, 1 ignores the main diagonal, 2 ignores diagonals (-1, 0, 1), etc. [default: 2]

	
--ignore-dist <ignore_dist>

	Distance in bp to ignore.

	
--tol <tol>

	Threshold value of variance of the marginals for the algorithm to converge. [default: 1e-05]

	
--max-iters <max_iters>

	Maximum number of iterations to perform if convergence is not achieved. [default: 200]

	
--cis-only

	Calculate weights against intra-chromosomal data only instead of genome-wide.

	
--trans-only

	Calculate weights against inter-chromosomal data only instead of genome-wide.

	
--name <name>

	Name of column to write to. [default: weight]

	
-f, --force

	Overwrite the target dataset, ‘weight’, if it already exists.

	
--check

	Check whether a data column ‘weight’ already exists.

	
--stdout

	Print weight column to stdout instead of saving to file.

	
--convergence-policy <convergence_policy>

	What to do with weights when balancing doesn’t converge in max_iters. ‘store_final’: Store the final result, regardless of whether the iterations converge to the specified tolerance; ‘store_nan’: Store a vector of NaN values to indicate that the matrix failed to converge; ‘discard’: Store nothing and exit gracefully; ‘error’: Abort with non-zero exit status. [default: store_final]

cooler info

Display a cooler’s info and metadata.

COOL_PATH : Path to a COOL file or cooler URI.

cooler info [OPTIONS] COOL_PATH

Arguments

	
COOL_PATH

	Required argument

Options

	
-f, --field <field>

	Print the value of a specific info field.

	
-m, --metadata

	Print the user metadata in JSON format.

	
-o, --out <out>

	Output file (defaults to stdout)

cooler dump

Dump a cooler’s data to a text stream.

COOL_PATH : Path to COOL file or cooler URI.

cooler dump [OPTIONS] COOL_PATH

Arguments

	
COOL_PATH

	Required argument

Options

	
-t, --table <table>

	Which table to dump. Choosing ‘chroms’ or ‘bins’ will cause all pixel-related options to be ignored. Note that for coolers stored in symmetric-upper mode, ‘pixels’ only holds the upper triangle values of the matrix. [default: pixels]

	
-c, --columns <columns>

	Restrict output to a subset of columns, provided as a comma-separated list.

	
-H, --header

	Print the header of column names as the first row. [default: False]

	
--na-rep <na_rep>

	Missing data representation. Default is empty ‘’.

	
--float-format <float_format>

	Format string for floating point numbers (e.g. ‘.12g’, ‘03.2f’). [default: g]

	
-r, --range <range>

	The coordinates of a genomic region shown along the row dimension, in UCSC-style notation. (Example: chr1:10,000,000-11,000,000). If omitted, the entire contact matrix is printed.

	
-r2, --range2 <range2>

	The coordinates of a genomic region shown along the column dimension. If omitted, the column range is the same as the row range.

	
-m, --matrix

	For coolers stored in symmetric-upper mode, ensure any empty areas of the genomic query window are populated by generating the lower-triangular pixels. [default: False]

	
-b, --balanced, --no-balance

	Apply balancing weights to data. This will print an extra column called balanced [default: False]

	
--join

	Print the full chromosome bin coordinates instead of bin IDs. This will replace the bin1_id column with chrom1, start1, and end1, and the bin2_id column with chrom2, start2 and end2. [default: False]

	
--annotate <annotate>

	Join additional columns from the bin table against the pixels. Provide a comma separated list of column names (no spaces). The merged columns will be suffixed by ‘1’ and ‘2’ accordingly.

	
--one-based-ids

	Print bin IDs as one-based rather than zero-based.

	
--one-based-starts

	Print start coordinates as one-based rather than zero-based.

	
-k, --chunksize <chunksize>

	Sets the amount of pixel data loaded from disk at one time. Can affect the performance of joins on high resolution datasets. Default is to load as many rows as there are bins.

	
-o, --out <out>

	Output text file If .gz extension is detected, file is written using zlib. Default behavior is to stream to stdout.

cooler show

Display and browse a cooler in matplotlib.

COOL_PATH : Path to a COOL file or Cooler URI.

RANGE : The coordinates of the genomic region to display, in UCSC notation.
Example: chr1:10,000,000-11,000,000

cooler show [OPTIONS] COOL_PATH RANGE

Arguments

	
COOL_PATH

	Required argument

	
RANGE

	Required argument

Options

	
-r2, --range2 <range2>

	The coordinates of a genomic region shown along the column dimension. If omitted, the column range is the same as the row range. Use to display asymmetric matrices or trans interactions.

	
-b, --balanced

	Show the balanced contact matrix. If not provided, display the unbalanced counts.

	
-o, --out <out>

	Save the image of the contact matrix to a file. If not specified, the matrix is displayed in an interactive window. The figure format is deduced from the extension of the file, the supported formats are png, jpg, svg, pdf, ps and eps.

	
--dpi <dpi>

	The DPI of the figure, if saving to a file

	
-s, --scale <scale>

	Scale transformation of the colormap: linear, log2 or log10. Default is log10.

	
-f, --force

	Force display very large matrices (>=10^8 pixels). Use at your own risk as it may cause performance issues.

	
--zmin <zmin>

	The minimal value of the color scale. Units must match those of the colormap scale. To provide a negative value use a equal sign and quotes, e.g. -zmin=’-0.5’

	
--zmax <zmax>

	The maximal value of the color scale. Units must match those of the colormap scale. To provide a negative value use a equal sign and quotes, e.g. -zmax=’-0.5’

	
--cmap <cmap>

	The colormap used to display the contact matrix. See the full list at http://matplotlib.org/examples/color/colormaps_reference.html

	
--field <field>

	Pixel values to display. [default: count]

cooler tree

Display a file’s data hierarchy.

cooler tree [OPTIONS] URI

Arguments

	
URI

	Required argument

Options

	
-L, --level <level>

	

cooler attrs

Display a file’s attribute hierarchy.

cooler attrs [OPTIONS] URI

Arguments

	
URI

	Required argument

Options

	
-L, --level <level>

	

cooler ls

List all coolers inside a file.

cooler ls [OPTIONS] COOL_PATH

Arguments

	
COOL_PATH

	Required argument

Options

	
-l, --long

	Long listing format

cooler cp

Copy a cooler from one file to another or within the same file.

See also: h5copy, h5repack tools from HDF5 suite.

cooler cp [OPTIONS] SRC_URI DST_URI

Arguments

	
SRC_URI

	Required argument

	
DST_URI

	Required argument

Options

	
-w, --overwrite

	Truncate and replace destination file if it already exists.

cooler mv

Rename a cooler within the same file.

cooler mv [OPTIONS] SRC_URI DST_URI

Arguments

	
SRC_URI

	Required argument

	
DST_URI

	Required argument

Options

	
-w, --overwrite

	Truncate and replace destination file if it already exists.

cooler ln

Create a hard link to a cooler (rather than a true copy) in the same file.
Also supports soft links (in the same file) or external links (different
files).

cooler ln [OPTIONS] SRC_URI DST_URI

Arguments

	
SRC_URI

	Required argument

	
DST_URI

	Required argument

Options

	
-w, --overwrite

	Truncate and replace destination file if it already exists.

	
-s, --soft

	Creates a soft link rather than a hard link if the source and destination file are the same. Otherwise, creates an external link. This type of link uses a path rather than a pointer.

cooler makebins

Generate fixed-width genomic bins.

Output a genome segmentation at a fixed resolution as a BED file.

CHROMSIZES_PATH : UCSC-like chromsizes file, with chromosomes in desired
order.

BINSIZE : Resolution (bin size) in base pairs <int>.

cooler makebins [OPTIONS] CHROMSIZES_PATH BINSIZE

Arguments

	
CHROMSIZES_PATH

	Required argument

	
BINSIZE

	Required argument

Options

	
-o, --out <out>

	Output file (defaults to stdout)

	
-H, --header

	Print the header of column names as the first row. [default: False]

	
-i, --rel-ids <rel_ids>

	Include a column of relative bin IDs for each chromosome. Choose whether to report them as 0- or 1-based.

cooler digest

Generate fragment-delimited genomic bins.

Output a genome segmentation of restriction fragments as a BED file.

CHROMSIZES_PATH : UCSC-like chromsizes file, with chromosomes in desired
order.

FASTA_PATH : Genome assembly FASTA file or folder containing FASTA files
(uncompressed).

ENZYME : Name of restriction enzyme

cooler digest [OPTIONS] CHROMSIZES_PATH FASTA_PATH ENZYME

Arguments

	
CHROMSIZES_PATH

	Required argument

	
FASTA_PATH

	Required argument

	
ENZYME

	Required argument

Options

	
-o, --out <out>

	Output file (defaults to stdout)

	
-H, --header

	Print the header of column names as the first row. [default: False]

	
-i, --rel-ids <rel_ids>

	Include a column of relative bin IDs for each chromosome. Choose whether to report them as 0- or 1-based.

cooler csort

Sort and index a contact list.

Order the mates of each pair record so that all contacts are upper
triangular with respect to the chromosome ordering given by the chromosomes
file, sort contacts by genomic location, and index the resulting file.

PAIRS_PATH : Contacts (i.e. read pairs) text file, optionally compressed.

CHROMOSOMES_PATH : File listing desired chromosomes in the desired order.
May be tab-delimited, e.g. a UCSC-style chromsizes file. Contacts mapping to
other chromosomes will be discarded.

Notes

- csort can also be used to sort and index a text representation of

a contact matrix in bedGraph-like format. In this case, substitute

pos1 and pos2 with start1 and start2, respectively.

- Requires Unix tools: sort, bgzip + tabix or pairix.

If indexing with Tabix, the output file will have the following properties:

- Upper triangular: the read pairs on each row are assigned to side 1 or 2

in such a way that (chrom1, pos1) is always “less than” (chrom2, pos2)

- Rows are lexicographically sorted by chrom1, pos1, chrom2, pos2;

i.e. “positionally sorted”

- Compressed with bgzip [*]

- Indexed using Tabix [*] on chrom1 and pos1.

If indexing with Pairix, the output file will have the following properties:

- Upper triangular: the read pairs on each row are assigned to side 1 or 2

in such a way that (chrom1, pos1) is always “less than” (chrom2, pos2)

- Rows are lexicographically sorted by chrom1, chrom2, pos1, pos2; i.e.

“block sorted”

- Compressed with bgzip [*]

- Indexed using Pairix [+] on chrom1, chrom2 and pos1.

[*] Tabix manpage: <http://www.htslib.org/doc/tabix.html>.

[+] Pairix on Github: <https://github.com/4dn-dcic/pairix>

cooler csort [OPTIONS] PAIRS_PATH CHROMOSOMES_PATH

Arguments

	
PAIRS_PATH

	Required argument

	
CHROMOSOMES_PATH

	Required argument

Options

	
-c1, --chrom1 <chrom1>

	chrom1 field number in the input file (starting from 1) [required]

	
-c2, --chrom2 <chrom2>

	chrom2 field number [required]

	
-p1, --pos1 <pos1>

	pos1 field number [required]

	
-p2, --pos2 <pos2>

	pos2 field number [required]

	
-i, --index <index>

	Select the preset sort and indexing options [default: pairix]

	
--flip-only

	Only flip mates; no sorting or indexing. Write to stdout. [default: False]

	
-p, --nproc <nproc>

	Number of processors [default: 8]

	
-0, --zero-based

	Read positions are zero-based [default: False]

	
--sep <sep>

	Data delimiter in the input file [default: t]

	
--comment-char <comment_char>

	Comment character to skip header [default: #]

	
--sort-options <sort_options>

	Quoted list of additional options to sort command

	
-o, --out <out>

	Output gzip file

	
-s1, --strand1 <strand1>

	strand1 field number (deprecated)

	
-s2, --strand2 <strand2>

	strand2 field number (deprecated)

Release notes

Upcoming release…

v0.8.9 [https://github.com/mirnylab/cooler/compare/v0.8.8...v0.8.9]

Date : 2020-07-17

Enhancements

	Added single-cell cooler file flavor (.scool) (#201)

v0.8.8 [https://github.com/mirnylab/cooler/compare/v0.8.7...v0.8.8]

Date : 2020-06-23

Maintenance

	Improved code coverage

	Added missing autodoc for cooler balance

	Dropped pysam and biopython as hard dependencies

	Officially sunsetting Python 2.7 support

Enhancements

	Added zoom progressions (#203)

Bug fixes

	Allow hashes in read IDs in cload pairs (#193)

v0.8.7 [https://github.com/mirnylab/cooler/compare/v0.8.6...v0.8.7]

Date: 2020-01-12

Maintenance

	Code styling with black

	Add coverage reporting

Bug fixes

	Replace json with simplejson to deal with attrs stored as bytes

v0.8.6 [https://github.com/mirnylab/cooler/compare/v0.8.5...v0.8.6]

Date: 2019-08-12

Maintenance

	Added contributing guidelines

Bug fixes

	Fixed a related regression that affected selection of the chrom column.

Post-release v0.8.6.post0: requirements files added to MANIFEST.in

v0.8.5 [https://github.com/mirnylab/cooler/compare/v0.8.4...v0.8.5]

Date: 2019-04-08

Bug fixes

	Fixed a regression that prevented selection of bins excluding the chrom column.

v0.8.4 [https://github.com/mirnylab/cooler/compare/v0.8.3...v0.8.4]

Date: 2019-04-04

Enhancements

	When creating coolers from unordered input, change the default temporary dir to be the same as the output file instead of the system tmp (pass ‘-‘ to use the system one). #150

	cooler ls and list_coolers() now output paths in natural order. #153

	New option in cooler.matrix() to handle divisive balancing weight vectors.

Bug fixes

	Restore function of --count-as-float option to cooler load

	Fixed partitioning issue sometimes causing some bins to get split during coarsen

	rename_chroms() will refresh cached chromosome names #147

	Cooler.bins() selector will always properly convert bins/chrom integer IDs to categorical chromosome names when the number of contigs is very large and therefore the HDF5 ENUM header is missing. Before this would only happen when explicitly requesting convert_enum=True.

v0.8.3 [https://github.com/mirnylab/cooler/compare/v0.8.2...v0.8.3]

Date: 2019-02-11

Bug fixes

	Fixed import bug in rename_chroms

	create_cooler no longer requires a “count” column when specifying custom value columns

v0.8.2 [https://github.com/mirnylab/cooler/compare/v0.8.1...v0.8.2]

Date: 2019-01-20

Enhancements

New options for cooler dump pixel output:

	--matrix option: Applies to symmetric-upper coolers; no-op for square coolers. Generates all lower triangular pixels necessary to fill the requested genomic query window. Without this option, cooler dump will only return the data explicity stored in the pixel table (i.e. upper triangle).

	-one-based-ids and --one-based-starts convenience options.

Bug fixes

	A bug was introduced into the matrix-as-pixels selector in 0.8.0 that also affected cooler dump. The behavior has been restored to that in 0.7.

v0.8.1 [https://github.com/mirnylab/cooler/compare/v0.8.0...v0.8.1]

Date: 2019-01-02

Enhancements

	cooler zoomify command can take additional base resolutions as input.

Bug fixes

	Fixed regression that slowed down pre-processing during coarsen.

	Fixed missing import on handling bad URIs.

	Restore but deprecate cooler.io.ls for backwards compatibility.

v0.8.0 [https://github.com/mirnylab/cooler/compare/v0.7.11...v0.8.0]

Date: 2018-12-31

This is a major release from 0.7 and includes an updated format version, and several API changes and deprecations.

Schema

	New schema version: v3

	Adds required storage-mode metadata attribute. Two possible values: "symmetric-upper" indicates a symmetric matrix encoded as upper triangle (previously the only storage mode); "square" indicates no special encoding (e.g. for non-symmetric matrices).

New features

	Support for non-symmetric matrices, e.g. RNA-DNA maps.

	Create function accepts a boolean symmetric_upper option to set the storage mode. Default is True.

	Creation commands also use symmetric_upper by default, which can be overridden with a flag.

	All main functionality exposed through top-level functions (create, merge, coarsen, zoomify, balance)

	New commands for generic file operations and file inspection.

API changes

	cooler.annotate() option replace now defaults to False.

	Submodule renaming. Old names are preserved as aliases but are deprecated.

	cooler.io -> cooler.create.

	cooler.ice -> cooler.balance.

	New top level public functions:

	cooler.create_cooler(). Use instead of cooler.io.create and cooler.io.create_from_unordered.

	cooler.merge_coolers()

	cooler.coarsen_cooler()

	cooler.zoomify_cooler()

	cooler.balance_cooler(). Alias: cooler.balance.iterative_correction().

	Refactored file operations available in cooler.fileops. See the API reference.

CLI changes

	Various output options added to cooler info, cooler dump, cooler makebins and cooler digest.

	Generic data and attribute hierarchy viewers cooler tree and cooler attrs.

	Generic cp, mv and ln convenience commands.

	New verbosity and process info options.

Maintenance

	Unit tests refactored and re-written for pytest.

v0.7.11 [https://github.com/mirnylab/cooler/compare/v0.7.10...v0.7.11]

Date: 2018-08-17

	Genomic range parser supports humanized units (k/K(b), m/M(b), g/G(b))

	Experimental support for arbitrary aggregation operations in cooler csort (e.g. mean, median, max, min)

	Documentation updates

Bug fixes

	Fix newline handling for csort when p1 or p2 is last column.

	Fix --count-as-float regression in load/cload.

v0.7.10 [https://github.com/mirnylab/cooler/compare/v0.7.9...v0.7.10]

Date: 2018-05-07

	Fix a shallow copy bug in validate pixels causing records to sometimes flip twice.

	Add ignore distance (bp) filter to cooler balance

	Start using shuffle filter by default

v0.7.9 [https://github.com/mirnylab/cooler/compare/v0.7.8...v0.7.9]

Date: 2018-03-30

	Indexed pairs loading commands now provide option for 0- or 1-based positions (1-based by default). #115

	Fixed error introduced into cload pairix in last release.

v0.7.8 [https://github.com/mirnylab/cooler/compare/v0.7.7...v0.7.8]

Date: 2018-03-18

Enhancements

	New cooler cload pairs command provides index-free loading of pairs.

	Changed name of create_from_unsorted to more correct create_from_unordered.

Bug fixes

	Fixed broken use of single-file temporary store in create_from_unordered.

	Added heuristic in pairix cload to prevent excessively large chunks. #92

	Added extra checks in cload pairix and cload tabix. #62, #75

v0.7.7 [https://github.com/mirnylab/cooler/compare/v0.7.6...v0.7.7]

Date: 2018-03-16

Enhancements

	Implementation of unsorted (index-free) loading

	cooler.io.create_from_unsorted takes an iterable of pixel dataframe chunks that need not be properly sorted.

	Use input sanitization procedures for pairs sanitize_records and binned data sanitize_pixels to feed data to create_from_unsorted. #87 #108 #109

	The cooler load command is now index-free: unsorted COO and BG2 input data can be streamed in. #90. This will soon be implemented as an option for loading pairs as well.

	Prevent cooler balance command from exiting with non-zero status upon failed convergence using convergence error policies. #93

	Improve the create API to support pandas read_csv-style columns and dtype kwargs to add extra value columns or override default dtypes. #108

	Experimental implementation of trans-only balancing. #56

Bug fixes

	Fix argmax deprecation. #99

v0.7.6 [https://github.com/mirnylab/cooler/compare/v0.7.5...v0.7.6]

Date: 2017-10-31

Enhancements

	Cooler zoomify with explicit resolutions

	Towards standardization of multicooler structure

	Support for loading 1-based COO triplet input files

Bug fixes

	Fixed issue of exceeding header limit with too many scaffolds. If header size is exceeded, chrom IDs are stored as raw integers instead of HDF5 enums. There should be no effect at the API level.

	Fixed issue of single-column chromosomes files not working in cload.

	Fixed edge case in performing joins when using both as_pixels and join options in the matrix selector.

Happy Halloween!

v0.7.5 [https://github.com/mirnylab/cooler/compare/v0.7.4...v0.7.5]

Date: 2017-07-13

	Fix pandas issue affecting cases when loading single chromosomes

	Add transform options to higlass API

v0.7.4 [https://github.com/mirnylab/cooler/compare/v0.7.3...v0.7.4]

Date: 2017-05-25

	Fix regression in automatic –balance option in cooler zoomify

	Fix special cases where cooler.io.create and append would not work with certain inputs

v0.7.3 [https://github.com/mirnylab/cooler/compare/v0.7.2...v0.7.3]

Date: 2017-05-22

	Added function to print higlass zoom resolutions for a given genome and base resolution.

v0.7.2 [https://github.com/mirnylab/cooler/compare/v0.7.1...v0.7.2]

Date: 2017-05-09

	Improve chunking and fix pickling issue with aggregating very large text datasets

	Restore zoom binsize metadata to higlass files

v0.7.1 [https://github.com/mirnylab/cooler/compare/v0.7.0...v0.7.1]

Date: 2017-04-29

	cooler load command can now accept supplemental pixel fields and custom field numbers

	Fix parsing errors with unused pixel fields

	Eliminate hard dependence on dask to make pip installs simpler. Conda package will retain dask as a run time requirement.

v0.7.0 [https://github.com/mirnylab/cooler/compare/v0.6.6...v0.7.0]

Date: 2017-04-27

New features

	New Cooler URIs: Full support for Cooler objects anywhere in the data hierarchy of a .cool file

	Experimental dask support via cooler.contrib.dask

	New explicit bin blacklist option for cooler balance

	Various new CLI tools:

	cooler list

	cooler copy

	cooler merge

	cooler csort now produces Pairix files by default

	cooler load now accepts two types of matrix text input formats

	3-column sparse matrix

	7-column bg2.gz (2D bedGraph) indexed with Pairix (e.g. using csort)

	cooler coarsegrain renamed cooler coarsen

	Multi-resolution HiGlass input files can now be generated with the cooler zoomify command

	More flexible API functions to create and append columns to Coolers in cooler.io

API/CLI changes

	cooler.io.create signature changed; chromsizes argument is deprecated.

	cooler csort argument order changed

Bug fixes

	Chromosome name length restriction removed

	Cooler.open function now correctly opens the specific root group of the Cooler and behaves like a proper context manager in all cases

v0.6.6 [https://github.com/mirnylab/cooler/compare/v0.6.5...v0.6.6]

Date: 2017-03-21

	Chromosome names longer than 32 chars are forbidden for now

	Improved pairix and tabix iterators, dropped need for slow first pass over contacts

v0.6.5 [https://github.com/mirnylab/cooler/compare/v0.6.4...v0.6.5]

Date: 2017-03-18

	Fixed pairix aggregator to properly deal with autoflipping of pairs

v0.6.4 [https://github.com/mirnylab/cooler/compare/v0.6.3...v0.6.4]

Date: 2017-03-17

	Migrated higlass multires aggregator to cooler coarsegrain command

	Fixed pairix aggregator to properly deal with autoflipping of pairs

v0.6.3 [https://github.com/mirnylab/cooler/compare/v0.6.2...v0.6.3]

Date: 2017-02-22

	Merge PairixAggregator patch from Soo.

	Update repr string

	Return matrix scale factor in balance stats rather than the bias scale factor: #35.

v0.6.2 [https://github.com/mirnylab/cooler/compare/v0.6.1...v0.6.2]

Date: 2017-02-12

Fixed regressions in

	cooler cload tabix/pairix failed on non-fixed sized bins

	cooler show

v0.6.1 [https://github.com/mirnylab/cooler/compare/v0.6.0...v0.6.1]

Date: 2017-02-06

	This fixes stale build used in bdist_wheel packaging that broke 0.6.0. #29

v0.6.0 [https://github.com/mirnylab/cooler/compare/v0.5.3...v0.6.0]

Date: 2017-02-03

Enhancements

	Dropped Python 3.3 support. Added 3.6 support.

	Added contrib subpackage containing utilities for higlass, including multires aggregation.

	Fixed various issues with synchronizing read/write multiprocessing with HDF5.

	Replacing prints with logging.

	Added sandboxed tools module to develop utilities for out-of-core algorithms using Coolers.

New features

	Cooler objects have additional convenience properties chromsizes, chromnames.

	New file introspection functions ls and is_cooler to support nested Cooler groups.

	Cooler initializer can accept a file path and path to Cooler group.

	cload accepts contact lists in hiclib-style HDF5 format, the legacy tabix-indexed format, and new pairix-indexed format.

API/CLI changes

	create only accepts a file path and optional group path instead of an open file object.

	Cooler.matrix selector now returns a balanced dense 2D NumPy array by default. Explicitly set balance to False to get raw counts and set sparse to True to get a coo_matrix as per old behavior.

	Command line parameters of cload changed significantly

Bug fixes

	Fixed bug in csort that led to incorrect triangularity of trans read pairs.

v0.5.3 [https://github.com/mirnylab/cooler/compare/v0.5.2...v0.5.3]

Date: 2016-09-10

	Check for existence of required external tools in CLI

	Fixed cooler show incompatibility with older versions of matplotlib

	Fixed cooler.annotate to work on empty dataframe input

	Fixed broken pipe signals not getting suppressed on Python 2

	cooler cload raises a warning when bin file lists a contig missing from the contact list

v0.5.2 [https://github.com/mirnylab/cooler/compare/v0.5.1...v0.5.2]

Date: 2016-08-26

	Fix bug in cooler csort parsing of chromsizes file.

	Workaround for two locale-related issues on Python 3. Only affects cases where a machine’s locale is set to ASCII or Unices which use the ambiguous C or POSIX locales.

	Fix typo in setup.py and add pysam to dependencies.

v0.5.1 [https://github.com/mirnylab/cooler/compare/v0.5.0...v0.5.1]

Date: 2016-08-24

	Bug fix in input parser to cooler csort

	Update triu reording awk template in cooler csort

	Rename cooler binnify to cooler makebins. Binnify sounds like “aggregate” which is what cload does.

v0.5.0 [https://github.com/mirnylab/cooler/compare/v0.4.0...v0.5.0]

Date: 2016-08-24

	Most scripts ported over to a new command line interface using the Click framework with many updates.

	New show and info scripts.

	Updated Readme.

	Minor bug fixes.

v0.4.0 [https://github.com/mirnylab/cooler/compare/v0.3.0...v0.4.0]

Date: 2016-08-18

Schema

	Updated file schema: v2

	/bins/chroms is now an enum instead of string column

API changes

	Table views are a bit more intuitive: selecting field names on table view objects returns a new view on the subset of columns.

	New API function: cooler.annotate for doing joins

New Features

	Support for nested Cooler “trees” at any depth in an HDF5 hierarchy

	Refactored cooler.io to provide “contact readers” that process different kinds of input (aggregate from a contact list, load from an existing matrix, etc.)

	Added new scripts for contact aggregation, loading, dumping and balancing

v0.3.0 [https://github.com/mirnylab/cooler/compare/v0.2.1...v0.3.0]

Date: 2016-02-18

	2D range selector matrix() now provides either rectangular data as coo_matrix or triangular data as a pixel table dataframe.

	Added binning support for any genome segmentation (i.e., fixed or variable bin width).

	Fixed issues with binning data from mapped read files.

	Genomic locus string parser now accepts ENSEMBL-style number-only chromosome names and FASTA-style sequence names containing pipes.

v0.2.1 [https://github.com/mirnylab/cooler/compare/v0.2...v0.2.1]

Date: 2016-02-07

	Fixed bintable region fetcher

v0.2 [https://github.com/mirnylab/cooler/compare/v0.1...v0.2]

Date: 2016-01-17

	First beta release

v0.1 [https://github.com/mirnylab/cooler/releases/tag/v0.1]

Date: 2015-11-22

	Working initial prototype.

Index

 Symbols
 | A
 | B
 | C
 | D
 | E
 | F
 | I
 | L
 | M
 | O
 | P
 | R
 | S
 | U
 | Z

Symbols

 	
 	
 --annotate <annotate>

 	cooler-dump command line option

 	
 --assembly <assembly>

 	cooler-cload-hiclib command line option

 	cooler-cload-pairix command line option

 	cooler-cload-pairs command line option

 	cooler-cload-tabix command line option

 	cooler-load command line option

 	
 --balance

 	cooler-zoomify command line option

 	
 --balance-args <balance_args>

 	cooler-zoomify command line option

 	
 --blacklist <blacklist>

 	cooler-balance command line option

 	
 --check

 	cooler-balance command line option

 	
 --chunksize <chunksize>

 	cooler-cload-pairs command line option

 	
 --cis-only

 	cooler-balance command line option

 	
 --cmap <cmap>

 	cooler-show command line option

 	
 --comment-char <comment_char>

 	cooler-cload-pairs command line option

 	cooler-csort command line option

 	cooler-load command line option

 	
 --convergence-policy <convergence_policy>

 	cooler-balance command line option

 	
 --count-as-float

 	cooler-load command line option

 	
 --dpi <dpi>

 	cooler-show command line option

 	
 --field <field>

 	cooler-cload-pairs command line option

 	cooler-coarsen command line option

 	cooler-load command line option

 	cooler-merge command line option

 	cooler-show command line option

 	cooler-zoomify command line option

 	
 --flip-only

 	cooler-csort command line option

 	
 --float-format <float_format>

 	cooler-dump command line option

 	
 --ignore-diags <ignore_diags>

 	cooler-balance command line option

 	
 --ignore-dist <ignore_dist>

 	cooler-balance command line option

 	
 --input-copy-status <input_copy_status>

 	cooler-cload-pairs command line option

 	cooler-load command line option

 	
 --join

 	cooler-dump command line option

 	
 --legacy

 	cooler-zoomify command line option

 	
 --mad-max <mad_max>

 	cooler-balance command line option

 	
 --max-iters <max_iters>

 	cooler-balance command line option

 	
 --max-merge <max_merge>

 	cooler-cload-pairs command line option

 	
 --metadata <metadata>

 	cooler-cload-hiclib command line option

 	cooler-cload-pairix command line option

 	cooler-cload-pairs command line option

 	cooler-cload-tabix command line option

 	cooler-load command line option

 	
 --min-count <min_count>

 	cooler-balance command line option

 	
 --min-nnz <min_nnz>

 	cooler-balance command line option

 	
 --na-rep <na_rep>

 	cooler-dump command line option

 	
 --name <name>

 	cooler-balance command line option

 	
 --no-delete-temp

 	cooler-cload-pairs command line option

 	
 --one-based

 	cooler-load command line option

 	
 --one-based-ids

 	cooler-dump command line option

 	
 --one-based-starts

 	cooler-dump command line option

 	
 --sep <sep>

 	cooler-csort command line option

 	
 --sort-options <sort_options>

 	cooler-csort command line option

 	
 --stdout

 	cooler-balance command line option

 	
 --storage-options <storage_options>

 	cooler-cload-pairs command line option

 	cooler-load command line option

 	
 --temp-dir <temp_dir>

 	cooler-cload-pairs command line option

 	
 --tol <tol>

 	cooler-balance command line option

 	
 --trans-only

 	cooler-balance command line option

 	
 --zmax <zmax>

 	cooler-show command line option

 	
 --zmin <zmin>

 	cooler-show command line option

 	
 -0, --zero-based

 	cooler-cload-pairix command line option

 	cooler-cload-pairs command line option

 	cooler-cload-tabix command line option

 	cooler-csort command line option

 	
 -b, --balanced

 	cooler-show command line option

 	
 	
 -b, --balanced, --no-balance

 	cooler-dump command line option

 	
 -c, --chunksize <chunksize>

 	cooler-balance command line option

 	cooler-cload-hiclib command line option

 	cooler-coarsen command line option

 	cooler-load command line option

 	cooler-merge command line option

 	cooler-zoomify command line option

 	
 -c, --columns <columns>

 	cooler-dump command line option

 	
 -c1, --chrom1 <chrom1>

 	cooler-cload-pairs command line option

 	cooler-csort command line option

 	
 -c2, --chrom2 <chrom2>

 	cooler-cload-pairs command line option

 	cooler-cload-tabix command line option

 	cooler-csort command line option

 	
 -d, --debug

 	cooler command line option

 	
 -f, --field <field>

 	cooler-info command line option

 	
 -f, --force

 	cooler-balance command line option

 	cooler-show command line option

 	
 -f, --format <format>

 	cooler-load command line option

 	
 -H, --header

 	cooler-digest command line option

 	cooler-dump command line option

 	cooler-makebins command line option

 	
 -i, --base-uri <base_uri>

 	cooler-zoomify command line option

 	
 -i, --index <index>

 	cooler-csort command line option

 	
 -i, --rel-ids <rel_ids>

 	cooler-digest command line option

 	cooler-makebins command line option

 	
 -k, --chunksize <chunksize>

 	cooler-dump command line option

 	
 -k, --factor <factor>

 	cooler-coarsen command line option

 	
 -L, --level <level>

 	cooler-attrs command line option

 	cooler-tree command line option

 	
 -l, --long

 	cooler-ls command line option

 	
 -m, --matrix

 	cooler-dump command line option

 	
 -m, --metadata

 	cooler-info command line option

 	
 -N, --no-symmetric-upper

 	cooler-cload-pairs command line option

 	cooler-load command line option

 	
 -n, -p, --nproc <nproc>

 	cooler-coarsen command line option

 	cooler-zoomify command line option

 	
 -o, --out <out>

 	cooler-coarsen command line option

 	cooler-csort command line option

 	cooler-digest command line option

 	cooler-dump command line option

 	cooler-info command line option

 	cooler-makebins command line option

 	cooler-show command line option

 	cooler-zoomify command line option

 	
 -p, --nproc <nproc>

 	cooler-balance command line option

 	cooler-cload-pairix command line option

 	cooler-cload-tabix command line option

 	cooler-csort command line option

 	
 -p1, --pos1 <pos1>

 	cooler-cload-pairs command line option

 	cooler-csort command line option

 	
 -p2, --pos2 <pos2>

 	cooler-cload-pairs command line option

 	cooler-cload-tabix command line option

 	cooler-csort command line option

 	
 -r, --range <range>

 	cooler-dump command line option

 	
 -r, --resolutions <resolutions>

 	cooler-zoomify command line option

 	
 -r2, --range2 <range2>

 	cooler-dump command line option

 	cooler-show command line option

 	
 -s, --max-split <max_split>

 	cooler-cload-pairix command line option

 	cooler-cload-tabix command line option

 	
 -s, --scale <scale>

 	cooler-show command line option

 	
 -s, --soft

 	cooler-ln command line option

 	
 -s1, --strand1 <strand1>

 	cooler-csort command line option

 	
 -s2, --strand2 <strand2>

 	cooler-csort command line option

 	
 -t, --table <table>

 	cooler-dump command line option

 	
 -v, --verbose

 	cooler command line option

 	
 -V, --version

 	cooler command line option

 	
 -w, --overwrite

 	cooler-cp command line option

 	cooler-ln command line option

 	cooler-mv command line option

A

 	
 	annotate() (in module cooler)

B

 	
 	balance_cooler() (in module cooler)

 	binnify() (in module cooler.util)

 	
 BINS

 	cooler-cload-hiclib command line option

 	cooler-cload-pairix command line option

 	cooler-cload-pairs command line option

 	cooler-cload-tabix command line option

 	
 	bins() (cooler.Cooler method)

 	
 BINS_PATH

 	cooler-load command line option

 	
 BINSIZE

 	cooler-makebins command line option

 	binsize (cooler.Cooler attribute)

C

 	
 	chromnames (cooler.Cooler attribute)

 	
 CHROMOSOMES_PATH

 	cooler-csort command line option

 	chroms() (cooler.Cooler method)

 	chromsizes (cooler.Cooler attribute)

 	
 CHROMSIZES_PATH

 	cooler-digest command line option

 	cooler-makebins command line option

 	coarsen_cooler() (in module cooler)

 	
 COOL_PATH

 	cooler-balance command line option

 	cooler-cload-hiclib command line option

 	cooler-cload-pairix command line option

 	cooler-cload-pairs command line option

 	cooler-cload-tabix command line option

 	cooler-coarsen command line option

 	cooler-dump command line option

 	cooler-info command line option

 	cooler-load command line option

 	cooler-ls command line option

 	cooler-show command line option

 	cooler-zoomify command line option

 	Cooler (class in cooler)

 	
 cooler command line option

 	-V, --version

 	-d, --debug

 	-v, --verbose

 	
 cooler-attrs command line option

 	-L, --level <level>

 	URI

 	
 cooler-balance command line option

 	--blacklist <blacklist>

 	--check

 	--cis-only

 	--convergence-policy <convergence_policy>

 	--ignore-diags <ignore_diags>

 	--ignore-dist <ignore_dist>

 	--mad-max <mad_max>

 	--max-iters <max_iters>

 	--min-count <min_count>

 	--min-nnz <min_nnz>

 	--name <name>

 	--stdout

 	--tol <tol>

 	--trans-only

 	-c, --chunksize <chunksize>

 	-f, --force

 	-p, --nproc <nproc>

 	COOL_PATH

 	
 cooler-cload-hiclib command line option

 	--assembly <assembly>

 	--metadata <metadata>

 	-c, --chunksize <chunksize>

 	BINS

 	COOL_PATH

 	PAIRS_PATH

 	
 cooler-cload-pairix command line option

 	--assembly <assembly>

 	--metadata <metadata>

 	-0, --zero-based

 	-p, --nproc <nproc>

 	-s, --max-split <max_split>

 	BINS

 	COOL_PATH

 	PAIRS_PATH

 	
 cooler-cload-pairs command line option

 	--assembly <assembly>

 	--chunksize <chunksize>

 	--comment-char <comment_char>

 	--field <field>

 	--input-copy-status <input_copy_status>

 	--max-merge <max_merge>

 	--metadata <metadata>

 	--no-delete-temp

 	--storage-options <storage_options>

 	--temp-dir <temp_dir>

 	-0, --zero-based

 	-N, --no-symmetric-upper

 	-c1, --chrom1 <chrom1>

 	-c2, --chrom2 <chrom2>

 	-p1, --pos1 <pos1>

 	-p2, --pos2 <pos2>

 	BINS

 	COOL_PATH

 	PAIRS_PATH

 	
 cooler-cload-tabix command line option

 	--assembly <assembly>

 	--metadata <metadata>

 	-0, --zero-based

 	-c2, --chrom2 <chrom2>

 	-p, --nproc <nproc>

 	-p2, --pos2 <pos2>

 	-s, --max-split <max_split>

 	BINS

 	COOL_PATH

 	PAIRS_PATH

 	
 cooler-coarsen command line option

 	--field <field>

 	-c, --chunksize <chunksize>

 	-k, --factor <factor>

 	-n, -p, --nproc <nproc>

 	-o, --out <out>

 	COOL_PATH

 	
 cooler-cp command line option

 	-w, --overwrite

 	DST_URI

 	SRC_URI

 	
 cooler-csort command line option

 	--comment-char <comment_char>

 	--flip-only

 	--sep <sep>

 	--sort-options <sort_options>

 	-0, --zero-based

 	-c1, --chrom1 <chrom1>

 	-c2, --chrom2 <chrom2>

 	-i, --index <index>

 	-o, --out <out>

 	-p, --nproc <nproc>

 	-p1, --pos1 <pos1>

 	-p2, --pos2 <pos2>

 	-s1, --strand1 <strand1>

 	-s2, --strand2 <strand2>

 	CHROMOSOMES_PATH

 	PAIRS_PATH

 	
 	
 cooler-digest command line option

 	-H, --header

 	-i, --rel-ids <rel_ids>

 	-o, --out <out>

 	CHROMSIZES_PATH

 	ENZYME

 	FASTA_PATH

 	
 cooler-dump command line option

 	--annotate <annotate>

 	--float-format <float_format>

 	--join

 	--na-rep <na_rep>

 	--one-based-ids

 	--one-based-starts

 	-H, --header

 	-b, --balanced, --no-balance

 	-c, --columns <columns>

 	-k, --chunksize <chunksize>

 	-m, --matrix

 	-o, --out <out>

 	-r, --range <range>

 	-r2, --range2 <range2>

 	-t, --table <table>

 	COOL_PATH

 	
 cooler-info command line option

 	-f, --field <field>

 	-m, --metadata

 	-o, --out <out>

 	COOL_PATH

 	
 cooler-ln command line option

 	-s, --soft

 	-w, --overwrite

 	DST_URI

 	SRC_URI

 	
 cooler-load command line option

 	--assembly <assembly>

 	--comment-char <comment_char>

 	--count-as-float

 	--field <field>

 	--input-copy-status <input_copy_status>

 	--metadata <metadata>

 	--one-based

 	--storage-options <storage_options>

 	-N, --no-symmetric-upper

 	-c, --chunksize <chunksize>

 	-f, --format <format>

 	BINS_PATH

 	COOL_PATH

 	PIXELS_PATH

 	
 cooler-ls command line option

 	-l, --long

 	COOL_PATH

 	
 cooler-makebins command line option

 	-H, --header

 	-i, --rel-ids <rel_ids>

 	-o, --out <out>

 	BINSIZE

 	CHROMSIZES_PATH

 	
 cooler-merge command line option

 	--field <field>

 	-c, --chunksize <chunksize>

 	IN_PATHS

 	OUT_PATH

 	
 cooler-mv command line option

 	-w, --overwrite

 	DST_URI

 	SRC_URI

 	
 cooler-show command line option

 	--cmap <cmap>

 	--dpi <dpi>

 	--field <field>

 	--zmax <zmax>

 	--zmin <zmin>

 	-b, --balanced

 	-f, --force

 	-o, --out <out>

 	-r2, --range2 <range2>

 	-s, --scale <scale>

 	COOL_PATH

 	RANGE

 	
 cooler-tree command line option

 	-L, --level <level>

 	URI

 	
 cooler-zoomify command line option

 	--balance

 	--balance-args <balance_args>

 	--field <field>

 	--legacy

 	-c, --chunksize <chunksize>

 	-i, --base-uri <base_uri>

 	-n, -p, --nproc <nproc>

 	-o, --out <out>

 	-r, --resolutions <resolutions>

 	COOL_PATH

 	cp() (in module cooler.fileops)

 	create_cooler() (in module cooler)

 	create_scool() (in module cooler)

D

 	
 	digest() (in module cooler.util)

 	
 DST_URI

 	cooler-cp command line option

 	cooler-ln command line option

 	cooler-mv command line option

E

 	
 	
 ENZYME

 	cooler-digest command line option

 	
 	extent() (cooler.Cooler method)

F

 	
 	
 FASTA_PATH

 	cooler-digest command line option

 	
 	fetch_chromsizes() (in module cooler.util)

I

 	
 	
 IN_PATHS

 	cooler-merge command line option

 	
 	info (cooler.Cooler attribute)

 	is_cooler() (in module cooler.fileops)

 	is_multires_file() (in module cooler.fileops)

L

 	
 	list_coolers() (in module cooler.fileops)

 	
 	ln() (in module cooler.fileops)

M

 	
 	matrix() (cooler.Cooler method)

 	
 	merge_coolers() (in module cooler)

 	mv() (in module cooler.fileops)

O

 	
 	offset() (cooler.Cooler method)

 	open() (cooler.Cooler method)

 	
 	
 OUT_PATH

 	cooler-merge command line option

P

 	
 	
 PAIRS_PATH

 	cooler-cload-hiclib command line option

 	cooler-cload-pairix command line option

 	cooler-cload-pairs command line option

 	cooler-cload-tabix command line option

 	cooler-csort command line option

 	
 	partition() (in module cooler.util)

 	pixels() (cooler.Cooler method)

 	
 PIXELS_PATH

 	cooler-load command line option

R

 	
 	
 RANGE

 	cooler-show command line option

 	
 	read_chromsizes() (in module cooler.util)

 	rename_chroms() (in module cooler)

S

 	
 	sanitize_pixels() (in module cooler.create)

 	sanitize_records() (in module cooler.create)

 	
 SRC_URI

 	cooler-cp command line option

 	cooler-ln command line option

 	cooler-mv command line option

 	
 	storage_mode (cooler.Cooler attribute)

U

 	
 	
 URI

 	cooler-attrs command line option

 	cooler-tree command line option

Z

 	
 	zoomify_cooler() (in module cooler)

Glossary

	HDF5 is a general purpose binary container format for large scientific datasets.

	h5py is a Python library providing low-level bindings to the libhdf5 C-library and a high-level, numpy-aware API to interact with HDF5 files on disk.

	The cooler data model is a flexible sparse data model for Hi-C and other genomically-labeled arrays.

	The cooler schema describes an implementation of the cooler data model using HDF5 as the underlying storage layer.

	Cooler files store one or more cooler data collections, each representing a genomically-labeled sparse array.

	Single-resolution cooler files are conventionally given the extension .cool. Multi-resolution files are usually suffixed .mcool.

	The cooler Python package provides an API to create cooler files and to interact with them both as data frames and sparse matrices.

	A genomic pairs list provides pointwise 2-tuples of single-bp genomic locations. In Hi-C this is also called a contact list.

	A genomic matrix, 2D array or heatmap assigns unique quantitative values to pairs of genomic intervals taken from a bin segmentation of a genome assembly. In Hi-C, a contact matrix is obtained by aggregating pairs.

Schema

Version: 1

This schema describes a compressed sparse row storage scheme (CSR) for a symmetric matrix with genomic dimension/axis annotations.

Notes:

	Any number of additional optional columns can be added to each table. (e.g. normalization vectors, quality masks).

	Genomic coordinates are assumed to be 0-based and intervals half-open (1-based ends).

Contact matrix

The tables and indexes can be represented in the Datashape [http://datashape.readthedocs.org/en/latest/] layout language:

{
 chroms: {
 name: typevar['Nchroms'] * string[32, 'ascii'],
 length: typevar['Nchroms'] * int64,
 },
 bins: {
 chrom_id: typevar['Nbins'] * int32,
 start: typevar['Nbins'] * int64,
 end: typevar['Nbins'] * int64,
 weight: typevar['Nbins'] * float64
 },
 pixels: {
 bin1_id: typevar['Nnz'] * int32,
 bin2_id: typevar['Nnz'] * int32,
 count: typevar['Nnz'] * int32
 },
 indexes: {
 chrom_offset: (typevar['Nchroms'] + 1) * int32,
 bin1_offset: (typevar['Nbins'] + 1) * int32
 }
}

Notes:

	Having the bin1_offset index, the bin1_id column becomes redundant, but we keep it for convenience as it is extremely compressible. It may be dropped in future versions.

Metadata

Essential key-value properties are stored as root-level HDF5 attributes. A specific bucket called metadata is reserved for arbitrary JSON-compatible user metadata.

nchroms : <int> Number of rows in scaffolds table
nbins : <int> Number of rows in bins table
nnz : <int> Number of rows in matrix table
bin-type : {"fixed" or "variable"}
bin-size : <int or null> Size of bins in base pairs if bin-type is "fixed"
genome-assembly : <string> Name of genome assembly
library-version : <string> Version of cooler library that created the file
format-version : <string> The version of the current format
format-url : <url> URL to page providing format details
creation-date : <datetime> Date the file was built
metadata : <json> custom user metadata about the experiment

Indexes

Indexes are stored as 1D datasets in a separate group. The current indexes can be thought of as run-length encodings of the bins/chrom and pixels/bin1_id columns, respectively.

	chrom_offset : indicates what row in the bin table each chromosome first appears.

	bin1_offset : indicates what row in the pixel table each bin1 ID appears. This is often called indptr in CSR data structures.

 Version: 2

This schema describes a compressed sparse row [https://en.wikipedia.org/wiki/Sparse_matrix#Compressed_sparse_row_.28CSR.2C_CRS_or_Yale_format.29] storage scheme (CSR) for a symmetric matrix with genomic dimension/axis annotations.

Notes:

	Any number of additional optional data columns can be added to each table.

	Genomic coordinates are assumed to be 0-based and intervals half-open (1-based ends).

Cooler

We refer to the data representation of a single contact matrix as a “Cooler”.

Following the convention of the odo [http://odo.pydata.org/en/latest/uri.html] package, we identify a Cooler using a Cooler URI string, separating the path to the container file from the data path within the container by :::

/path/to/container.cool::/path/to/cooler/group

Contact matrix

The tables and indexes can be represented in the Datashape [http://datashape.readthedocs.org/en/latest/] layout language:

{
 chroms: {
 name: typevar['Nchroms'] * string['ascii'],
 length: typevar['Nchroms'] * int32,
 },
 bins: {
 chrom: typevar['Nbins'] * categorical[typevar['name'], type=string, ordered=True],
 start: typevar['Nbins'] * int32,
 end: typevar['Nbins'] * int32,
 weight: typevar['Nbins'] * float64
 },
 pixels: {
 bin1_id: typevar['Nnz'] * int64,
 bin2_id: typevar['Nnz'] * int64,
 count: typevar['Nnz'] * int32
 },
 indexes: {
 chrom_offset: (typevar['Nchroms'] + 1) * int64,
 bin1_offset: (typevar['Nbins'] + 1) * int64
 }
}

Notes:

	Having the bin1_offset index, the bin1_id column becomes redundant, but we keep it for convenience as it is extremely compressible. It may be dropped in future versions.

Metadata

Essential key-value properties are stored as root-level HDF5 attributes. A specific bucket called metadata is reserved for arbitrary JSON-compatible user metadata.

nchroms : <int> Number of rows in scaffolds table
nbins : <int> Number of rows in bins table
nnz : <int> Number of rows in matrix table
bin-type : {"fixed" or "variable"}
bin-size : <int or null> Size of bins in base pairs if bin-type is "fixed"
genome-assembly : <string> Name of genome assembly
generated-by : <string> Agent that created the file (e.g. 'cooler-x.y.z')
creation-date : <datetime> Date the file was built
format-version : <string> The version of the format used
format-url : <url> URL to page providing format details
metadata : <json> custom user metadata about the experiment

Indexes

Indexes are stored as 1D datasets in a separate group. The current indexes can be thought of as run-length encodings of the bins/chrom and pixels/bin1_id columns, respectively.

	chrom_offset : indicates what row in the bin table each chromosome first appears.

	bin1_offset : indicates what row in the pixel table each bin1 ID appears. This is often called indptr in CSR data structures.

	Schema Version

	3

The following document describes a compressed sparse row (CSR) [https://en.wikipedia.org/wiki/Sparse_matrix#Compressed_sparse_row_.28CSR.2C_CRS_or_Yale_format.29] storage scheme for a matrix (i.e., a quantitative heatmap) with genomically labeled dimensions/axes.

HDF5 does not natively implement sparse arrays or relational data structures: its datasets are dense multidimensional arrays. We implement tables and sparse array indexes in HDF5 using groups of 1D arrays. The descriptions of tables and indexes in this document specify required groups and arrays, conventional column orders, and default data types.

Summary of changes

	Version 3 introduces the storage-mode metadata attribute to accomodate square matrices that are non-symmetric. Version 2 files which lack the storage-mode attribute should be interpreted as using the “symmetric-upper” storage mode. See Storage mode.

	The multi-resolution cooler file layout has been standardized. See File flavors.

Data collection

We refer to the object hierarchy describing a single matrix as a cooler data collection. A cooler data collection consists of tables, indexes and metadata describing a genomically-labelled sparse matrix.

A typical data collection has the following structure. At the top level, there are four HDF5 Groups [http://docs.h5py.org/en/stable/high/group.html], each containing 1D arrays (HDF5 Datasets [http://docs.h5py.org/en/stable/high/dataset.html]). The depiction below shows an example group hierarchy as a tree, with arrays at the leaves, printed with their shapes in parentheses and their data type symbols.

/
 ├── chroms
 │ ├── length (24,) int32
 │ └── name (24,) |S64
 ├── bins
 │ ├── chrom (3088281,) int32
 │ ├── start (3088281,) int32
 │ ├── end (3088281,) int32
 │ └── weight (3088281,) float64
 ├── pixels
 │ ├── bin1_id (271958554,) int64
 │ ├── bin2_id (271958554,) int64
 │ └── count (271958554,) int32
 └── indexes
 ├── bin1_offset (3088282,) int64
 └── chrom_offset (25,) int64

URI syntax

We identify a cooler data collection using a URI string to its top-level group, separating the system path to the container file from the group path within the container file by a double colon ::.

path/to/container.cool::/path/to/cooler/group

For any URI, the leading slash after the :: may be omitted. To reference the root group /, the entire ::/ suffix may be omitted (i.e., just a file path).

Tables

A table is a group of equal-length 1D arrays representing columns.

Additional groups and tables may be added to a data collection as long as they are not nested under the group of another table.

This storage mode does not enforce specific column orders, but conventional orders for required columns is provided in the listings below.

This storage mode does not set limits on the number or length of columns. Additional arrays may be inserted into a table to form new columns, but they must conform to the common length of the table.

The table descriptions below are given in the datashape [http://datashape.readthedocs.org/en/latest/] layout language. The column data types are given as numpy equivalents. They are only defaults and may be altered as desired.

GZIP is chosen as the default compression filter for all columns. This is for portability reasons, since all versions of the HDF5 library ship with it.

chroms

chroms: {
 # REQUIRED
 name: typevar['Nchroms'] * string['ascii'],
 length: typevar['Nchroms'] * int32
}

In HDF5, name is a null-padded, fixed-length ASCII array, which maps to numpy’s S dtype.

bins

bins: {
 # REQUIRED
 chrom: typevar['Nbins'] * categorical[typevar['name'], type=string, ordered=True],
 start: typevar['Nbins'] * int32,
 end: typevar['Nbins'] * int32,

 # RESERVED
 weight: typevar['Nbins'] * float64
}

In HDF5, we use the integer-backed ENUM type to encode the chrom column. For data collections with a very large number of scaffolds, the ENUM type information may be too large to fit in the object’s metadata header. In that case, the chrom column is stored using raw integers and the enumeration is inferred from the chrom table.

Genomic intervals are stored using a 0-start, half-open [http://genome.ucsc.edu/blog/the-ucsc-genome-browser-coordinate-counting-systems] representation. The first interval in a scaffold should have start = 0 and the last interval should have end = the chromosome length. Intervals are sorted by chrom, then by start.

Because they measure the same quantity in the same units, the coordinate columns chroms/length, bins/start and bins/end should be encoded using the same data type.

The cooler balance command stores balancing weights in a column called weight by default. NaN values indicate genomic bins that were blacklisted during the balancing procedure.

pixels

pixels: {
 # REQUIRED
 bin1_id: typevar['Nnz'] * int64,
 bin2_id: typevar['Nnz'] * int64,

 # RESERVED
 count: typevar['Nnz'] * int32
}

In the matrix coordinate system, bin1_id refers to the ith axis and bin2_id refers to the jth. Bin IDs are zero-based, i.e. we start counting at 0. Pixels are sorted by bin1_id then by bin2_id.

The count column is integer by default, but floating point types can be substituted. Additional columns are to be interpreted as supplementary value columns.

Warning

float16 [https://github.com/hetio/hetio/pull/15] has limited support from 3rd party libraries and is not recommended. For floating point value columns consider using either single- (float32) or double-precision (float64).

Indexes

Indexes are stored as 1D arrays in a separate group called indexes. They can be thought of as run-length encodings of the bins/chrom and pixels/bin1_id columns, respectively. Both arrays are required.

indexes: {
 chrom_offset: (typevar['Nchroms'] + 1) * int64,
 bin1_offset: (typevar['Nbins'] + 1) * int64
}

	chrom_offset: indicates which row in the bin table each chromosome first appears. The last element stores the length of the bin table.

	bin1_offset: indicates which row in the pixel table each bin1 ID first appears. The last element stores the length of the pixel table. This index is usually called indptr in CSR data structures.

Storage mode

Storing a symmetric matrix requires only the upper triangular part, including the diagonal, since the remaining elements can be reconstructed from the former ones. To indicate the use of this mode of matrix storage to client software, the value of the metadata attribute storage-mode must be set to "symmetric-upper" (see Metadata).

New in version 3: To indicate the absence of a special storage mode, e.g. for non-symmetric matrices, storage-mode must be set to "square". This storage mode indicates to client software that 2D range queries should not be symmetrized.

Warning

In schema v2 and earlier, the symmetric-upper storage mode is always assumed.

Metadata

Essential key-value properties are stored as HDF5 attributes [http://docs.h5py.org/en/stable/high/attr.html] at the top-level group of the data collection. Note that depending on where the data collection is located in the file, this can be different from the root group of the entire file /.

Required attributes

	
format : string (constant)

	“HDF5::Cooler”

	
format-version : int

	The schema version used.

	
bin-type : { "fixed", "variable" }

	Indicates whether the resolution is constant along both axes.

	
bin-size : int or "null"

	Size of genomic bins in base pairs if bin-type is “fixed”. Otherwise, “null”.

	
storage-mode : { "symmetric-upper", "square" }

	Indicates whether ordinary sparse matrix encoding is used (“square”) or whether a symmetric matrix is encoded by storing only the upper triangular elements (“symmetric-upper”).

Reserved, but optional

	
assembly : string

	Name of the genome assembly, e.g. “hg19”.

	
generated-by : string

	Agent that created the file, e.g. “cooler-x.y.z”.

	
creation-date : datetime string

	The moment the collection was created.

	
metadata : JSON

	Arbitrary JSON-compatible user metadata about the experiment.

All scalar string attributes, including serialized JSON, must be stored as variable-length UTF-8 encoded strings.

Warning

When assigning scalar string attributes in Python 2, always store values having unicode type. In h5py, assigning a Python text string (Python 3 str or Python 2 unicode) to an HDF5 attribute results in variable-length UTF-8 storage.

Additional metadata may be stored in other top-level attributes and the attributes of table groups and columns.

File flavors

Many cooler data collections can be stored in a single file. We recognize two conventional layouts:

Single-resolution

	A single-resolution cooler file that contains a single data collection under the / group. Conventional file extension: .cool.

XYZ.1000.cool
/
 ├── bins
 ├── chroms
 ├── pixels
 └── indexes

Multi-resolution

	A multi-resolution cooler file that contains multiple “coarsened” resolutions or “zoom-levels” derived from the same dataset. Multires cooler files should store each data collection underneath a group called /resolutions within a sub-group whose name is the bin size (e.g, XYZ.1000.mcool::resolutions/10000). If the base cooler has variable-length bins, then use 1 to designate the base resolution, and the use coarsening multiplier (e.g. 2, 4, 8, etc.) to name the lower resolutions. Conventional file extension: .mcool.

XYZ.1000.mcool
/
 └── resolutions
 ├── 1000
 │ ├── bins
 │ ├── chroms
 │ ├── pixels
 │ └── indexes
 ├── 2000
 │ ├── bins
 │ ├── chroms
 │ ├── pixels
 │ └── indexes
 ├── 5000
 │ ├── bins
 │ ├── chroms
 │ ├── pixels
 │ └── indexes
 ├── 10000
 │ ├── bins
 │ ├── chroms
 │ ├── pixels
 │ └── indexes
 .
 .
 .

In addition, a multi-resolution cooler file may indicate to clients that it is using this layout with the following /-level attributes:

	
format : string (constant)

	“HDF5::MCOOL”

	
format-version : int

	2

	
bin-type : { "fixed", "variable" }

	Indicates whether the resolution is constant along both axes.

Note

The old multi-resolution layout used resolutions strictly in increments of powers of 2. In this layout (MCOOL version 2), the data collections are named by zoom level, starting with XYZ.1000.mcool::0 being the coarsest resolution up until the finest or “base” resolution (e.g., XYZ.1000.mcool::14 for 14 levels of coarsening).

Changed in version 0.8: Both the legacy layout and the new mcool layout are supported by HiGlass [http://higlass.io/app/]. Prior to cooler 0.8, the new layout was produced only when requesting a specific list of resolutions. As of cooler 0.8, the new layout is always produced by the cooler zoomify command unless the --legacy option is given. Files produced by cooler.zoomify_cooler(), hic2cool [https://github.com/4dn-dcic/hic2cool/], and the mcools from the 4DN data portal [https://data.4dnucleome.org/] also follow the new layout.

Single-cell (single-resolution)

A single-cell cooler file contains all the matrices of a single-cell Hi-C data set. All cells are stored under a group called /cells, and all cells share the primary bin table columns
i.e. bins['chrom'], bins['start'] and bins['end'] which are hardlinked [http://docs.h5py.org/en/stable/high/group.html#hard-links] to the root-level bin table. Any individual cell can be accessed using the regular cooler.Cooler interface.
Conventional file extension: .scool.

XYZ.scool
/
 ├── bins
 ├── chroms
 └── cells
 ├── cell_id1
 │ ├── bins
 │ ├── chroms
 │ ├── pixels
 │ └── indexes
 ├── cell_id2
 │ ├── bins
 │ ├── chroms
 │ ├── pixels
 │ └── indexes
 ├── cell_id3
 │ ├── bins
 │ ├── chroms
 │ ├── pixels
 │ └── indexes
 ├── cell_id4
 │ ├── bins
 │ ├── chroms
 │ ├── pixels
 │ └── indexes
 .
 .
 .

In addition, a single-cell single-resolution cooler file may indicate to clients that it is using this layout with the following /-level attributes:

	
format : string (constant)

	“HDF5::SCOOL”

	
format-version : int

	1

	
bin-type : { "fixed", "variable" }

	Indicates whether the resolution is constant along both axes.

	
bin-size : int

	The bin resolution

	
nbins : int

	The number of bins

	
nchroms : int

	The number of chromosomes of the cells

	
ncells : int

	The number of stored cells

 _static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 Cooler

 		
 Quickstart

 		
 Installation

 		
 Command line interface

 		
 Python API

 		
 What is cooler?

 		
 Genomically-labeled arrays

 		
 Data model

 		
 Tables

 		
 Indexes

 		
 Container

 		
 HDF5 bindings in other languages

 		
 Caveats

 		
 Concepts

 		
 Resource String

 		
 Data selection

 		
 Table selectors (chroms, bins, pixels)

 		
 Matrix selector

 		
 Dask

 		
 Create a scool file

 		
 Schema

 		
 Data collection

 		
 URI syntax

 		
 Tables

 		
 chroms

 		
 bins

 		
 pixels

 		
 Indexes

 		
 Storage mode

 		
 Metadata

 		
 File flavors

 		
 Single-resolution

 		
 Multi-resolution

 		
 Single-cell (single-resolution)

 		
 Previous schema versions

 		
 API Reference

 		
 Quick reference

 		
 Cooler class

 		
 Creation/reduction

 		
 Manipulation

 		
 File operations

 		
 Sandbox

 		
 cooler

 		
 cooler.create

 		
 cooler.fileops

 		
 cooler.util

 		
 cooler.sandbox

 		
 CLI Reference

 		
 Quick reference

 		
 cooler cload

 		
 cooler cload pairs

 		
 cooler cload pairix

 		
 cooler cload tabix

 		
 cooler cload hiclib

 		
 cooler load

 		
 cooler merge

 		
 cooler coarsen

 		
 cooler zoomify

 		
 cooler balance

 		
 cooler info

 		
 cooler dump

 		
 cooler show

 		
 cooler tree

 		
 cooler attrs

 		
 cooler ls

 		
 cooler cp

 		
 cooler mv

 		
 cooler ln

 		
 cooler makebins

 		
 cooler digest

 		
 cooler csort

 		
 Release notes

 		
 Upcoming release…

 		
 v0.8.9

 		
 Enhancements

 		
 v0.8.8

 		
 Maintenance

 		
 Enhancements

 		
 Bug fixes

 		
 v0.8.7

 		
 Maintenance

 		
 Bug fixes

 		
 v0.8.6

 		
 Maintenance

 		
 Bug fixes

 		
 v0.8.5

 		
 Bug fixes

 		
 v0.8.4

 		
 Enhancements

 		
 Bug fixes

 		
 v0.8.3

 		
 Bug fixes

 		
 v0.8.2

 		
 Enhancements

 		
 Bug fixes

 		
 v0.8.1

 		
 Enhancements

 		
 Bug fixes

 		
 v0.8.0

 		
 Schema

 		
 New features

 		
 API changes

 		
 CLI changes

 		
 Maintenance

 		
 v0.7.11

 		
 v0.7.10

 		
 v0.7.9

 		
 v0.7.8

 		
 Enhancements

 		
 Bug fixes

 		
 v0.7.7

 		
 Enhancements

 		
 Bug fixes

 		
 v0.7.6

 		
 Enhancements

 		
 Bug fixes

 		
 v0.7.5

 		
 v0.7.4

 		
 v0.7.3

 		
 v0.7.2

 		
 v0.7.1

 		
 v0.7.0

 		
 New features

 		
 Bug fixes

 		
 v0.6.6

 		
 v0.6.5

 		
 v0.6.4

 		
 v0.6.3

 		
 v0.6.2

 		
 v0.6.1

 		
 v0.6.0

 		
 Enhancements

 		
 New features

 		
 API/CLI changes

 		
 Bug fixes

 		
 v0.5.3

 		
 v0.5.2

 		
 v0.5.1

 		
 v0.5.0

 		
 v0.4.0

 		
 Schema

 		
 API changes

 		
 New Features

 		
 v0.3.0

 		
 v0.2.1

 		
 v0.2

 		
 v0.1

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

