from __future__ import annotations
import os
import os.path as op
import posixpath
import tempfile
import warnings
from collections.abc import Iterable
from datetime import datetime
from typing import Any
import h5py
import numpy as np
import pandas as pd
import simplejson as json
from .._logging import get_logger
from .._typing import Tabular
from .._version import __format_version__, __format_version_scool__, __version__
from ..core import get, put
from ..util import (
get_binsize,
get_chromsizes,
get_meta,
infer_meta,
parse_cooler_uri,
rlencode,
)
from . import (
BIN1OFFSET_DTYPE,
BIN_DTYPE,
CHROM_DTYPE,
CHROMID_DTYPE,
CHROMOFFSET_DTYPE,
CHROMSIZE_DTYPE,
COORD_DTYPE,
COUNT_DTYPE,
MAGIC,
MAGIC_SCOOL,
PIXEL_DTYPES,
PIXEL_FIELDS,
URL,
)
from ._ingest import validate_pixels
logger = get_logger("cooler.create")
def write_chroms(grp: h5py.Group, chroms: pd.DataFrame, h5opts: dict) -> None:
"""
Write the chromosome table.
Parameters
----------
grp : h5py.Group
Group handle of an open HDF5 file with write permissions.
chroms : DataFrame
Chromosome table containing at least 'chrom' and 'length' columns
h5opts : dict
HDF5 dataset filter options.
"""
n_chroms = len(chroms)
names = np.array(chroms["name"], dtype=CHROM_DTYPE) # auto-adjusts char length
grp.create_dataset(
"name", shape=(n_chroms,), dtype=names.dtype, data=names, **h5opts
)
grp.create_dataset(
"length",
shape=(n_chroms,),
dtype=CHROMSIZE_DTYPE,
data=chroms["length"],
**h5opts,
)
# Extra columns
columns = list(chroms.keys())
for col in ["name", "length"]:
columns.remove(col)
if columns:
put(grp, chroms[columns])
def write_bins(
grp: h5py.Group,
bins: pd.DataFrame,
chromnames: list[str],
h5opts: dict,
chrom_as_enum: bool = True,
) -> None:
"""
Write the genomic bin table.
Parameters
----------
grp : h5py.Group
Group handle of an open HDF5 file with write permissions.
bins : pandas.DataFrame
BED-like data frame with at least three columns: ``chrom``, ``start``,
``end``, sorted by ``chrom`` then ``start``, and forming a complete
genome segmentation. The ``chrom`` column must be sorted according to
the ordering in ``chroms``.
chromnames : sequence of str
Contig names.
h5opts : dict
HDF5 dataset filter options.
"""
n_chroms = len(chromnames)
n_bins = len(bins)
idmap = dict(zip(chromnames, range(n_chroms)))
# Convert chrom names to enum
chrom_ids = [idmap[chrom] for chrom in bins["chrom"]]
if chrom_as_enum:
chrom_dtype = h5py.special_dtype(enum=(CHROMID_DTYPE, idmap))
else:
chrom_dtype = CHROMID_DTYPE
# Store bins
try:
chrom_dset = grp.create_dataset(
"chrom", shape=(n_bins,), dtype=chrom_dtype, data=chrom_ids, **h5opts
)
except ValueError:
# If too many scaffolds for HDF5 enum header,
# try storing chrom IDs as raw int instead
if chrom_as_enum:
chrom_as_enum = False
chrom_dtype = CHROMID_DTYPE
chrom_dset = grp.create_dataset(
"chrom", shape=(n_bins,), dtype=chrom_dtype, data=chrom_ids, **h5opts
)
else:
raise
if not chrom_as_enum:
chrom_dset.attrs["enum_path"] = "/chroms/name"
grp.create_dataset(
"start", shape=(n_bins,), dtype=COORD_DTYPE, data=bins["start"], **h5opts
)
grp.create_dataset(
"end", shape=(n_bins,), dtype=COORD_DTYPE, data=bins["end"], **h5opts
)
# Extra columns
columns = list(bins.keys())
for col in ["chrom", "start", "end"]:
columns.remove(col)
if columns:
put(grp, bins[columns])
def prepare_pixels(
grp: h5py.Group,
n_bins: int,
max_size: int,
columns: pd.Index | list[str],
dtypes: pd.Series | dict[str, Any],
h5opts: dict,
) -> None:
columns = list(columns)
init_size = min(5 * n_bins, max_size)
grp.create_dataset(
"bin1_id",
dtype=dtypes.get("bin1_id", BIN_DTYPE),
shape=(init_size,),
maxshape=(max_size,),
**h5opts,
)
grp.create_dataset(
"bin2_id",
dtype=dtypes.get("bin2_id", BIN_DTYPE),
shape=(init_size,),
maxshape=(max_size,),
**h5opts,
)
if "count" in columns:
grp.create_dataset(
"count",
dtype=dtypes.get("count", COUNT_DTYPE),
shape=(init_size,),
maxshape=(max_size,),
**h5opts,
)
for col in ["bin1_id", "bin2_id", "count"]:
try:
columns.remove(col)
except ValueError:
pass
if columns:
for col in columns:
grp.create_dataset(
col,
dtype=dtypes.get(col, float),
shape=(init_size,),
maxshape=(max_size,),
**h5opts,
)
def write_pixels(
filepath: str,
grouppath: str,
columns: pd.Index | list[str],
iterable: Tabular | Iterable[Tabular],
h5opts: dict,
lock: Any | None,
) -> tuple[int, int]:
"""
Write the non-zero pixel table.
Parameters
----------
filepath : str
Path to HDF5 output file.
grouppath : str
Qualified path to destination HDF5 group.
columns : sequence
Sequence of column names
iterable : an iterable object
An object that processes and yields binned contacts from some input
source as a stream of chunks. The chunks must be either pandas
DataFrames or mappings of column names to arrays.
h5opts : dict
HDF5 filter options.
lock : multiprocessing.Lock, optional
Optional lock to synchronize concurrent HDF5 file access.
"""
nnz = 0
total = 0
for i, chunk in enumerate(iterable):
if isinstance(chunk, pd.DataFrame):
chunk = {k: v.values for k, v in chunk.items()}
try:
if lock is not None:
lock.acquire()
logger.debug(f"writing chunk {i}")
with h5py.File(filepath, "r+") as fw:
grp = fw[grouppath]
dsets = [grp[col] for col in columns]
n = len(chunk[columns[0]])
for col, dset in zip(columns, dsets):
dset.resize((nnz + n,))
dset[nnz : nnz + n] = chunk[col]
nnz += n
if "count" in chunk:
total += chunk["count"].sum()
fw.flush()
finally:
if lock is not None:
lock.release()
return nnz, total
def index_pixels(grp: h5py.Group, n_bins: int, nnz: int) -> np.ndarray:
bin1 = grp["bin1_id"]
bin1_offset = np.zeros(n_bins + 1, dtype=BIN1OFFSET_DTYPE)
curr_val = 0
for start, _length, value in zip(*rlencode(bin1, 1000000)):
bin1_offset[curr_val : value + 1] = start
curr_val = value + 1
bin1_offset[curr_val:] = nnz
return bin1_offset
def index_bins(grp: h5py.Group, n_chroms: int, n_bins: int) -> np.ndarray:
chrom_ids = grp["chrom"]
chrom_offset = np.zeros(n_chroms + 1, dtype=CHROMOFFSET_DTYPE)
curr_val = 0
for start, _length, value in zip(*rlencode(chrom_ids)):
chrom_offset[curr_val : value + 1] = start
curr_val = value + 1
chrom_offset[curr_val:] = n_bins
return chrom_offset
def write_indexes(
grp: h5py.Group,
chrom_offset: np.ndarray,
bin1_offset: np.ndarray,
h5opts: dict
) -> None:
"""
Write the indexes.
Parameters
----------
grp : h5py.Group
Group handle of an open HDF5 file with write permissions.
chrom_offset : sequence
Lookup table: chromosome ID -> first row in bin table (bin ID)
corresponding to that chromosome.
bin1_offset : sequence
Lookup table: genomic bin ID -> first row in pixel table (pixel ID)
having that bin on the first axis.
"""
grp.create_dataset(
"chrom_offset",
shape=(len(chrom_offset),),
dtype=CHROMOFFSET_DTYPE,
data=chrom_offset,
**h5opts,
)
grp.create_dataset(
"bin1_offset",
shape=(len(bin1_offset),),
dtype=BIN1OFFSET_DTYPE,
data=bin1_offset,
**h5opts,
)
def write_info(grp: h5py.Group, info: dict, scool: bool = False) -> None:
"""
Write the file description and metadata attributes.
Parameters
----------
grp : h5py.Group
Group handle of an open HDF5 file with write permissions.
info : dict
Dictionary, unnested with the possible exception of the ``metadata``
key. ``metadata``, if present, must be JSON-serializable.
Required keys
-------------
nbins : int
number of genomic bins
nnz : int
number of non-zero pixels
"""
assert "nbins" in info
if not scool:
assert "nnz" in info
info.setdefault("genome-assembly", "unknown")
info["metadata"] = json.dumps(info.get("metadata", {}))
info["creation-date"] = datetime.now().isoformat()
info["generated-by"] = "cooler-" + __version__
if scool:
info["format"] = MAGIC_SCOOL
info["format-version"] = __format_version_scool__
else:
info["format"] = MAGIC
info["format-version"] = __format_version__
info["format-url"] = URL
grp.attrs.update(info)
def _rename_chroms(
grp: h5py.Group, rename_dict: dict[str, str], h5opts: dict
) -> None:
chroms = get(grp["chroms"]).set_index("name")
n_chroms = len(chroms)
new_names = np.array(
chroms.rename(rename_dict).index.values, dtype=CHROM_DTYPE
) # auto-adjusts char length
# Replace chroms/name
del grp["chroms/name"]
grp["chroms"].create_dataset(
"name", shape=(n_chroms,), dtype=new_names.dtype, data=new_names, **h5opts
)
# Replace the bins/chroms enum mapping if applicable
bins = get(grp["bins"])
n_bins = len(bins)
if isinstance(bins["chrom"].dtype, pd.CategoricalDtype):
idmap = dict(zip(new_names, range(n_chroms)))
chrom_ids = bins["chrom"].cat.codes
chrom_dtype = h5py.special_dtype(enum=(CHROMID_DTYPE, idmap))
del grp["bins/chrom"]
try:
grp["bins"].create_dataset(
"chrom", shape=(n_bins,), dtype=chrom_dtype, data=chrom_ids, **h5opts
)
except ValueError:
# If HDF5 enum header would be too large,
# try storing chrom IDs as raw int instead
chrom_dtype = CHROMID_DTYPE
grp["bins"].create_dataset(
"chrom", shape=(n_bins,), dtype=chrom_dtype, data=chrom_ids, **h5opts
)
[docs]
def rename_chroms(
clr,
rename_dict: dict[str, str],
h5opts: dict | None = None
) -> None:
"""
Substitute existing chromosome/contig names for new ones. They will be
written to the file and the Cooler object will be refreshed.
Parameters
----------
clr : Cooler
Cooler object that can be opened with write permissions.
rename_dict : dict
Dictionary of old -> new chromosome names. Any names omitted from
the dictionary will be kept as is.
h5opts : dict, optional
HDF5 filter options.
"""
h5opts = _set_h5opts(h5opts)
with clr.open("r+") as f:
_rename_chroms(f, rename_dict, h5opts)
clr._refresh()
def _get_dtypes_arg(
dtypes: pd.Series | dict | None,
kwargs: dict[str, Any]
) -> pd.Series | dict | None:
if "dtype" in kwargs:
if dtypes is None:
dtypes = kwargs.pop("dtype")
warnings.warn(
"Use dtypes= instead of dtype=", FutureWarning, stacklevel=2
)
else:
raise ValueError(
'Received both "dtypes" and "dtype" arguments. '
'Please use "dtypes" to provide a column name -> dtype mapping. '
'"dtype" remains as an alias but is deprecated.'
)
return dtypes
def _set_h5opts(h5opts: dict[str, Any]) -> dict[str, Any]:
result = {}
if h5opts is not None:
result.update(h5opts)
available_opts = {
"chunks",
"maxshape",
"compression",
"compression_opts",
"scaleoffset",
"shuffle",
"fletcher32",
"fillvalue",
"track_times",
}
for key in result.keys():
if key not in available_opts:
raise ValueError(f"Unknown storage option '{key}'.")
result.setdefault("compression", "gzip")
if result["compression"] == "gzip" and "compression_opts" not in result:
result["compression_opts"] = 6
result.setdefault("shuffle", True)
return result
def create(
cool_uri,
bins,
pixels,
columns=None,
dtypes=None,
metadata=None,
assembly=None,
symmetric_upper=True,
mode=None,
h5opts=None,
boundscheck=True,
triucheck=True,
dupcheck=True,
ensure_sorted=False,
lock=None,
append=False,
append_scool=False,
scool_root_uri=None,
**kwargs,
):
"""
Create a new Cooler.
Deprecated parameters
---------------------
chromsizes : Series
Chromsizes are now inferred from ``bins``.
append : bool, optional
Append new Cooler to the file if it exists. If False, an existing file
with the same name will be truncated. Default is False.
Use the ``mode`` argument instead.
dtype : dict, optional
Dictionary mapping column names in the pixel table to dtypes.
Use the ``dtypes`` argument instead.
"""
file_path, group_path = parse_cooler_uri(cool_uri)
file_path = op.realpath(file_path)
if mode is None:
mode = "a" if append else "w"
h5opts = _set_h5opts(h5opts)
if not isinstance(bins, pd.DataFrame):
raise ValueError(
"Second positional argument must be a pandas DataFrame. "
"Note that the `chromsizes` argument is now deprecated: "
"see documentation for `create`."
)
if append_scool and scool_root_uri is None:
raise ValueError(
"If the parameter `append_scool` is set, the parameter "
"`scool_root_uri` must be defined."
)
dtypes = _get_dtypes_arg(dtypes, kwargs)
for col in ["chrom", "start", "end"]:
if col not in bins.columns:
raise ValueError(f"Missing column from bin table: '{col}'.")
# Populate expected pixel column names. Include user-provided value
# columns.
if columns is None:
columns = ["bin1_id", "bin2_id", "count"]
else:
columns = list(columns)
for col in ["bin1_id", "bin2_id"]: # don't include count!
if col not in columns:
columns.insert(0, col)
# Populate dtypes for expected pixel columns, and apply user overrides.
if dtypes is None:
dtypes = dict(PIXEL_DTYPES)
else:
dtypes_ = dict(dtypes)
dtypes = dict(PIXEL_DTYPES)
dtypes.update(dtypes_)
# Get empty "meta" header frame (assigns the undeclared dtypes).
# Any columns from the input not in meta will be ignored.
meta = get_meta(columns, dtypes, default_dtype=float)
# Determine the appropriate iterable
try:
from dask.dataframe import DataFrame as dask_df
except (ImportError, AttributeError): # pragma: no cover
dask_df = ()
if isinstance(pixels, dask_df):
iterable = (x.compute() for x in pixels.to_delayed())
input_columns = infer_meta(pixels).columns
elif isinstance(pixels, pd.DataFrame):
iterable = (pixels,)
input_columns = infer_meta(pixels).columns
elif isinstance(pixels, dict):
iterable = (pixels,)
input_columns = infer_meta([(k, v.dtype) for (k, v) in pixels.items()]).columns
else:
iterable = pixels
input_columns = None
# If possible, ensure all expected columns are available
if input_columns is not None:
for col in columns:
if col not in input_columns:
col_type = "Standard" if col in PIXEL_FIELDS else "User"
raise ValueError(f"{col_type} column not found in input: '{col}'")
# Prepare chroms and bins
bins = bins.copy()
bins["chrom"] = bins["chrom"].astype(object)
chromsizes = get_chromsizes(bins)
try:
chromsizes = chromsizes.items()
except AttributeError:
pass
chromnames, lengths = zip(*chromsizes)
chroms = pd.DataFrame(
{"name": chromnames, "length": lengths}, columns=["name", "length"]
)
binsize = get_binsize(bins)
n_chroms = len(chroms)
n_bins = len(bins)
if not symmetric_upper and triucheck:
warnings.warn(
"Creating a non-symmetric matrix, but `triucheck` was set to "
"True. Changing to False.",
stacklevel=2,
)
triucheck = False
# Chain input validation to the end of the pipeline
if boundscheck or triucheck or dupcheck or ensure_sorted:
validator = validate_pixels(
n_bins, boundscheck, triucheck, dupcheck, ensure_sorted
)
iterable = map(validator, iterable)
# Create root group
with h5py.File(file_path, mode) as f:
logger.info(f'Creating cooler at "{file_path}::{group_path}"')
if group_path == "/":
for name in ["chroms", "bins", "pixels", "indexes"]:
if name in f:
del f[name]
else:
try:
f.create_group(group_path)
except ValueError:
del f[group_path]
f.create_group(group_path)
# Write chroms, bins and pixels
if append_scool:
src_path, src_group = parse_cooler_uri(scool_root_uri)
dst_path, dst_group = parse_cooler_uri(cool_uri)
with h5py.File(src_path, "r+") as src, h5py.File(dst_path, "r+") as dst:
dst[dst_group]["chroms"] = src["chroms"]
# hard link to root bins table, but only the three main datasets
dst[dst_group]["bins/chrom"] = src["bins/chrom"]
dst[dst_group]["bins/start"] = src["bins/start"]
dst[dst_group]["bins/end"] = src["bins/end"]
# create per cell the additional columns e.g. 'weight'
# these columns are individual for each cell
columns = list(bins.keys())
for col in ["chrom", "start", "end"]:
columns.remove(col)
if columns:
put(dst[dst_group]["bins"], bins[columns])
with h5py.File(file_path, "r+") as f:
h5 = f[group_path]
grp = h5.create_group("pixels")
if symmetric_upper:
max_size = n_bins * (n_bins - 1) // 2 + n_bins
else:
max_size = n_bins * n_bins
prepare_pixels(
grp, n_bins, max_size, meta.columns, dict(meta.dtypes), h5opts
)
else:
with h5py.File(file_path, "r+") as f:
h5 = f[group_path]
logger.info("Writing chroms")
grp = h5.create_group("chroms")
write_chroms(grp, chroms, h5opts)
logger.info("Writing bins")
grp = h5.create_group("bins")
write_bins(grp, bins, chroms["name"], h5opts)
grp = h5.create_group("pixels")
if symmetric_upper:
max_size = n_bins * (n_bins - 1) // 2 + n_bins
else:
max_size = n_bins * n_bins
prepare_pixels(
grp, n_bins, max_size, meta.columns, dict(meta.dtypes), h5opts
)
# Multiprocess HDF5 reading is supported only if the same HDF5 file is not
# open in write mode anywhere. To read and write to the same file, pass a
# lock shared with the HDF5 reading processes. `write_pixels` will acquire
# it and open the file for writing for the duration of each write step
# only. After it closes the file and releases the lock, the reading
# processes will have to re-acquire the lock and re-open the file to obtain
# the updated file state for reading.
logger.info("Writing pixels")
target = posixpath.join(group_path, "pixels")
nnz, ncontacts = write_pixels(
file_path, target, meta.columns, iterable, h5opts, lock
)
# Write indexes
with h5py.File(file_path, "r+") as f:
h5 = f[group_path]
logger.info("Writing indexes")
grp = h5.create_group("indexes")
chrom_offset = index_bins(h5["bins"], n_chroms, n_bins)
bin1_offset = index_pixels(h5["pixels"], n_bins, nnz)
write_indexes(grp, chrom_offset, bin1_offset, h5opts)
logger.info("Writing info")
info = {}
info["bin-type"] = "fixed" if binsize is not None else "variable"
info["bin-size"] = binsize if binsize is not None else "null"
info["storage-mode"] = "symmetric-upper" if symmetric_upper else "square"
info["nchroms"] = n_chroms
info["nbins"] = n_bins
info["sum"] = ncontacts
info["nnz"] = nnz
if assembly is not None:
info["genome-assembly"] = assembly
if metadata is not None:
info["metadata"] = metadata
write_info(h5, info)
def create_from_unordered(
cool_uri,
bins,
chunks,
columns=None,
dtypes=None,
mode=None,
mergebuf=20_000_000,
delete_temp=True,
temp_dir=None,
max_merge=200,
**kwargs,
):
"""
Create a Cooler in two passes via an external sort mechanism. In the first
pass, a sequence of data chunks are processed and sorted in memory and saved
to temporary Coolers. In the second pass, the temporary Coolers are merged
into the output. This way the individual chunks do not need to be provided
in any particular order.
"""
from .._reduce import CoolerMerger
from ..api import Cooler
# chromsizes = get_chromsizes(bins)
bins = bins.copy()
bins["chrom"] = bins["chrom"].astype(object)
if columns is not None:
columns = [col for col in columns if col not in {"bin1_id", "bin2_id"}]
if temp_dir is None:
temp_dir = op.dirname(parse_cooler_uri(cool_uri)[0])
elif temp_dir == "-":
temp_dir = None # makes tempfile module use the system dir
dtypes = _get_dtypes_arg(dtypes, kwargs)
is_windows = os.name == "nt"
if is_windows and delete_temp:
delete = False
else:
delete = delete_temp
temp_files = []
# Sort pass
tf = tempfile.NamedTemporaryFile(
suffix=".multi.cool", delete=delete, dir=temp_dir
)
temp_files.append(tf)
uris = []
for i, chunk in enumerate(chunks):
uri = tf.name + "::" + str(i)
uris.append(uri)
logger.info(f"Writing chunk {i}: {uri}")
create(uri, bins, chunk, columns=columns, dtypes=dtypes, mode="a", **kwargs)
# Merge passes
n = len(uris)
if n > max_merge > 0:
# Recursive merge: do the first of two merge passes.
# Divide into ~sqrt(n) merges
edges = np.linspace(0, n, int(np.sqrt(n)), dtype=int)
tf2 = tempfile.NamedTemporaryFile(
suffix=".multi.cool", delete=delete, dir=temp_dir
)
temp_files.append(tf2)
uris2 = []
for lo, hi in zip(edges[:-1], edges[1:]):
chunk_subset = CoolerMerger(
[Cooler(uri) for uri in uris[lo:hi]], mergebuf, columns=columns
)
uri = tf2.name + "::" + f"{lo}-{hi}"
uris2.append(uri)
logger.info(f"Merging chunks {lo}-{hi}: {uri}")
create(
uri,
bins,
chunk_subset,
columns=columns,
dtypes=dtypes,
mode="a",
**kwargs,
)
final_uris = uris2
else:
# Do a single merge pass
final_uris = uris
# Do the final merge pass
chunks = CoolerMerger(
[Cooler(uri) for uri in final_uris], mergebuf, columns=columns
)
logger.info(f"Merging into {cool_uri}")
create(cool_uri, bins, chunks, columns=columns, dtypes=dtypes, mode=mode, **kwargs)
if is_windows and delete_temp:
for tf in temp_files:
if not tf.closed:
tf.close()
os.remove(tf.name)
del temp_files
def append(
cool_uri, table, data, chunked=False, force=False, h5opts=None, lock=None
): # pragma: no cover
"""
Append one or more data columns to an existing table.
Parameters
----------
cool_uri : str
Path to Cooler file or URI to Cooler group.
table : str
Name of table (HDF5 group).
data : dict-like
DataFrame, Series or mapping of column names to data. If the input is a
dask DataFrame or Series, the data is written in chunks.
chunked : bool, optional
If True, the values of the data dict are treated as separate chunk
iterators of column data.
force : bool, optional
If True, replace existing columns with the same name as the input.
h5opts : dict, optional
HDF5 dataset filter options to use (compression, shuffling,
checksumming, etc.). Default is to use autochunking and GZIP
compression, level 6.
lock : multiprocessing.Lock, optional
Optional lock to synchronize concurrent HDF5 file access.
"""
h5opts = _set_h5opts(h5opts)
file_path, group_path = parse_cooler_uri(cool_uri)
try:
from dask.dataframe import DataFrame as dask_df
from dask.dataframe import Series as dask_series
except (ImportError, AttributeError):
dask_df = ()
dask_series = ()
if isinstance(data, dask_series):
data = data.to_frame()
try:
names = data.keys()
except AttributeError:
names = data.columns
with h5py.File(file_path, "r+") as f:
h5 = f[group_path]
for name in names:
if name in h5[table]:
if not force:
raise ValueError(
f"'{name}' column already exists. "
+ "Use --force option to overwrite."
)
else:
del h5[table][name]
if isinstance(data, dask_df):
# iterate over dataframe chunks
for chunk in data.to_delayed():
i = 0
for chunk in data.to_delayed():
chunk = chunk.compute()
try:
if lock is not None:
lock.acquire()
put(h5[table], chunk, lo=i, h5opts=h5opts)
finally:
if lock is not None:
lock.release()
i += len(chunk)
elif chunked:
# iterate over chunks from each column
for key in data.keys():
i = 0
for chunk in data[key]:
try:
if lock is not None:
lock.acquire()
put(h5[table], {key: chunk}, lo=i, h5opts=h5opts)
finally:
if lock is not None:
lock.release()
i += len(chunk)
else:
# write all the data
try:
if lock is not None:
lock.acquire()
put(h5[table], data, lo=0, h5opts=h5opts)
finally:
if lock is not None:
lock.release()
_DOC_OTHER_PARAMS = """
columns : sequence of str, optional
Customize which value columns from the input pixels to store in the
cooler. Non-standard value columns will be given dtype ``float64``
unless overriden using the ``dtypes`` argument. If ``None``, we only
attempt to store a value column named ``"count"``.
dtypes : dict, optional
Dictionary mapping column names to dtypes. Can be used to override the
default dtypes of ``bin1_id``, ``bin2_id`` or ``count`` or assign
dtypes to custom value columns. Non-standard value columns given in
``dtypes`` must also be provided in the ``columns`` argument or they
will be ignored.
metadata : dict, optional
Experiment metadata to store in the file. Must be JSON compatible.
assembly : str, optional
Name of genome assembly.
ordered : bool, optional [default: False]
If the input chunks of pixels are provided with correct triangularity
and in ascending order of (``bin1_id``, ``bin2_id``), set this to
``True`` to write the cooler in one step.
If ``False`` (default), we create the cooler in two steps using an
external sort mechanism. See Notes for more details.
symmetric_upper : bool, optional [default: True]
If True, sets the file's storage-mode property to ``symmetric-upper``:
use this only if the input data references the upper triangle of a
symmetric matrix! For all other cases, set this option to False.
mode : {'w' , 'a'}, optional [default: 'w']
Write mode for the output file. 'a': if the output file exists, append
the new cooler to it. 'w': if the output file exists, it will be
truncated. Default is 'w'.
Other parameters
----------------
mergebuf : int, optional
Maximum number of records to buffer in memory at any give time during
the merge step.
delete_temp : bool, optional
Whether to delete temporary files when finished.
Useful for debugging. Default is False.
temp_dir : str, optional
Create temporary files in a specified directory instead of the same
directory as the output file. Pass ``-`` to use the system default.
max_merge : int, optional
If merging more than ``max_merge`` chunks, do the merge recursively in
two passes.
h5opts : dict, optional
HDF5 dataset filter options to use (compression, shuffling,
checksumming, etc.). Default is to use autochunking and GZIP
compression, level 6.
lock : multiprocessing.Lock, optional
Optional lock to control concurrent access to the output file.
ensure_sorted : bool, optional
Ensure that each input chunk is properly sorted.
boundscheck : bool, optional
Input validation: Check that all bin IDs lie in the expected range.
dupcheck : bool, optional
Input validation: Check that no duplicate pixels exist within any chunk.
triucheck : bool, optional
Input validation: Check that ``bin1_id`` <= ``bin2_id`` when creating
coolers in symmetric-upper mode.
""".strip()
_DOC_NOTES = """
Notes
-----
If the pixel chunks are provided in the correct order required for the
output to be properly sorted, then the cooler can be created in a single
step by setting ``ordered=True``.
If not, the cooler is created in two steps via an external sort mechanism.
In the first pass, the sequence of pixel chunks are processed and sorted in
memory and saved to temporary coolers. In the second pass, the temporary
coolers are merged into the output file. This way the individual chunks do
not need to be provided in any particular order. When ``ordered=False``,
the following options for the merge step are available: ``mergebuf``,
``delete_temp``, ``temp_dir``, ``max_merge``.
Each chunk of pixels will go through a validation pipeline, which can be
customized with the following options: ``boundscheck``, ``triucheck``,
``dupcheck``, ``ensure_sorted``.
""".strip()
def _format_docstring(**kwargs):
def decorate(func):
func.__doc__ = func.__doc__.format(**kwargs)
return func
return decorate
[docs]
@_format_docstring(other_parameters=_DOC_OTHER_PARAMS, notes=_DOC_NOTES)
def create_cooler(
cool_uri: str,
bins: pd.DataFrame,
pixels: Tabular | Iterable[Tabular],
columns: list[str] | None = None,
dtypes: dict[str, Any] | None = None,
metadata: dict | None = None,
assembly: str | None = None,
ordered: bool = False,
symmetric_upper: bool = True,
mode: str = "w",
mergebuf: int = 20_000_000,
delete_temp: bool = True,
temp_dir: str | None = None,
max_merge: str = 200,
boundscheck: bool = True,
dupcheck: bool = True,
triucheck: bool = True,
ensure_sorted: bool = False,
h5opts: dict | None = None,
lock: Any | None = None,
) -> None:
r"""
Create a cooler from bins and pixels at the specified URI.
Because the number of pixels is often very large, the input pixels are
normally provided as an iterable (e.g., an iterator or generator) of
DataFrame **chunks** that fit in memory.
.. versionadded:: 0.8.0
Parameters
----------
cool_uri : str
Path to cooler file or URI string. If the file does not exist,
it will be created.
bins : pandas.DataFrame
Segmentation of the chromosomes into genomic bins as a BED-like
DataFrame with columns ``chrom``, ``start`` and ``end``. May contain
additional columns.
pixels : DataFrame, dictionary, or iterable of either
A table, given as a dataframe or a column-oriented dict, containing
columns labeled ``bin1_id``, ``bin2_id`` and ``count``, sorted by
(``bin1_id``, ``bin2_id``). If additional columns are included in the
pixel table, their names and dtypes must be specified using the
``columns`` and ``dtypes`` arguments. For larger input data, an
**iterable** can be provided that yields the pixel data as a sequence
of chunks. If the input is a dask DataFrame, it will also be processed
one chunk at a time.
{other_parameters}
See also
--------
cooler.create_scool
cooler.create.sanitize_records
cooler.create.sanitize_pixels
{notes}
"""
# dispatch to the approprate creation method
if isinstance(pixels, (pd.DataFrame, dict)):
pixels = pd.DataFrame(pixels).sort_values(["bin1_id", "bin2_id"])
ordered = True
if ordered:
create(
cool_uri,
bins,
pixels,
columns=columns,
dtypes=dtypes,
metadata=metadata,
assembly=assembly,
symmetric_upper=symmetric_upper,
mode=mode,
boundscheck=boundscheck,
dupcheck=dupcheck,
triucheck=triucheck,
ensure_sorted=ensure_sorted,
h5opts=h5opts,
lock=lock,
)
else:
create_from_unordered(
cool_uri,
bins,
pixels,
columns=columns,
dtypes=dtypes,
metadata=metadata,
assembly=assembly,
symmetric_upper=symmetric_upper,
mode=mode,
boundscheck=boundscheck,
dupcheck=dupcheck,
triucheck=triucheck,
ensure_sorted=ensure_sorted,
h5opts=h5opts,
lock=lock,
mergebuf=mergebuf,
delete_temp=delete_temp,
temp_dir=temp_dir,
max_merge=max_merge,
)
[docs]
@_format_docstring(other_parameters=_DOC_OTHER_PARAMS, notes=_DOC_NOTES)
def create_scool(
cool_uri: str,
bins: pd.DataFrame,
cell_name_pixels_dict: dict[str, pd.DataFrame],
columns: list[str] | None = None,
dtypes: dict[str, Any] | None = None,
metadata: dict | None = None,
assembly: str | None = None,
ordered: bool = False,
symmetric_upper: bool = True,
mode: str = "w",
mergebuf: int = 20_000_000,
delete_temp: bool = True,
temp_dir: str | None = None,
max_merge: int = 200,
boundscheck: bool = True,
dupcheck: bool = True,
triucheck: bool = True,
ensure_sorted: bool = False,
h5opts: dict | None = None,
lock: Any | None = None,
**kwargs,
) -> None:
r"""
Create a single-cell (scool) file.
For each cell store a cooler matrix under **/cells**, where all matrices
have the same dimensions.
Each cell is a regular cooler data collection, so the input must be a
bin table and pixel table for each cell. The pixel tables are provided as
a dictionary where the key is a unique cell name. The bin tables can be
provided as a dict with the same keys or a single common bin table can be
given.
.. versionadded:: 0.8.9
Parameters
----------
cool_uri : str
Path to scool file or URI string. If the file does not exist,
it will be created.
bins : :class:`pandas.DataFrame` or Dict[str, DataFrame]
A single bin table or dictionary of cell names to bins tables. A bin
table is a dataframe with columns ``chrom``, ``start`` and ``end``.
May contain additional columns.
cell_name_pixels_dict : Dict[str, DataFrame]
Cell name as key and pixel table DataFrame as value.
A table, given as a dataframe or a column-oriented dict, containing
columns labeled ``bin1_id``, ``bin2_id`` and ``count``, sorted by
(``bin1_id``, ``bin2_id``). If additional columns are included in the
pixel table, their names and dtypes must be specified using the
``columns`` and ``dtypes`` arguments. For larger input data, an
**iterable** can be provided that yields the pixel data as a sequence
of chunks. If the input is a dask DataFrame, it will also be processed
one chunk at a time.
{other_parameters}
See also
--------
cooler.create_cooler
cooler.zoomify_cooler
{notes}
"""
file_path, group_path = parse_cooler_uri(cool_uri)
h5opts = _set_h5opts(h5opts)
if isinstance(bins, pd.DataFrame):
bins_dict = {cell_name: bins for cell_name in cell_name_pixels_dict}
cell_names = sorted(cell_name_pixels_dict)
else:
# Assume bins is a dict of cell name -> dataframe
bins_dict = bins
if len(bins_dict) == 0:
raise ValueError("At least one bin must be given.")
else:
bins = bins_dict[next(iter(bins_dict))][["chrom", "start", "end"]]
# Sort bins_dict and cell_name_pixels_dict to guarantee matching keys
bins_keys = sorted(bins_dict)
cell_names = sorted(cell_name_pixels_dict)
for key_bins, key_pixels in zip(bins_keys, cell_names):
if key_bins != key_pixels:
raise ValueError("Bins and pixel dicts do not have matching keys")
dtypes = _get_dtypes_arg(dtypes, kwargs)
for col in ["chrom", "start", "end"]:
if col not in bins.columns:
raise ValueError(f"Missing column from bin table: '{col}'.")
# Populate dtypes for expected pixel columns, and apply user overrides.
if dtypes is None:
dtypes = dict(PIXEL_DTYPES)
else:
dtypes_ = dict(dtypes)
dtypes = dict(PIXEL_DTYPES)
dtypes.update(dtypes_)
# Determine the appropriate iterable
# try:
# from dask.dataframe import DataFrame as dask_df
# except (ImportError, AttributeError): # pragma: no cover
# dask_df = ()
# Prepare chroms and bins
bins = bins.copy()
bins["chrom"] = bins["chrom"].astype(object)
chromsizes = get_chromsizes(bins)
try:
chromsizes = chromsizes.items()
except AttributeError:
pass
chromnames, lengths = zip(*chromsizes)
chroms = pd.DataFrame(
{"name": chromnames, "length": lengths}, columns=["name", "length"]
)
binsize = get_binsize(bins)
n_chroms = len(chroms)
n_bins = len(bins)
# Create root group
with h5py.File(file_path, mode) as f:
logger.info(f'Creating cooler at "{file_path}::{group_path}"')
if group_path == "/":
for name in ["chroms", "bins"]:
if name in f:
del f[name]
else:
try:
f.create_group(group_path)
except ValueError:
del f[group_path]
f.create_group(group_path)
with h5py.File(file_path, "r+") as f:
h5 = f[group_path]
logger.info("Writing chroms")
grp = h5.create_group("chroms")
write_chroms(grp, chroms, h5opts)
logger.info("Writing bins")
grp = h5.create_group("bins")
write_bins(grp, bins, chroms["name"], h5opts)
with h5py.File(file_path, "r+") as f:
h5 = f[group_path]
logger.info("Writing info")
info = {}
info["bin-type"] = "fixed" if binsize is not None else "variable"
info["bin-size"] = binsize if binsize is not None else "null"
info["nchroms"] = n_chroms
info["ncells"] = len(cell_name_pixels_dict)
info["nbins"] = n_bins
if assembly is not None:
info["genome-assembly"] = assembly
if metadata is not None:
info["metadata"] = metadata
write_info(h5, info, True)
# Append single cells
for key in cell_names:
if "/" in key:
cell_name = key.split("/")[-1]
else:
cell_name = key
create(
cool_uri + "::/cells/" + cell_name,
bins_dict[key],
cell_name_pixels_dict[key],
columns=columns,
dtypes=dtypes,
metadata=metadata,
assembly=assembly,
ordered=ordered,
symmetric_upper=symmetric_upper,
mode="a",
boundscheck=boundscheck,
dupcheck=dupcheck,
triucheck=triucheck,
ensure_sorted=ensure_sorted,
h5opts=h5opts,
lock=lock,
mergebuf=mergebuf,
delete_temp=delete_temp,
temp_dir=temp_dir,
max_merge=max_merge,
append_scool=True,
scool_root_uri=cool_uri,
)