from __future__ import annotations
import os
import re
from collections import OrderedDict, defaultdict
from collections.abc import Generator, Iterable, Iterator
from contextlib import contextmanager
from typing import IO, Any
import h5py
import numpy as np
import pandas as pd
from pandas.api.types import is_integer, is_scalar
from ._typing import GenomicRangeSpecifier, GenomicRangeTuple
[docs]
def partition(start: int, stop: int, step: int) -> Iterator[tuple[int, int]]:
"""Partition an integer interval into equally-sized subintervals.
Like builtin :py:func:`range`, but yields pairs of end points.
Examples
--------
>>> for lo, hi in partition(0, 9, 2):
print(lo, hi)
0 2
2 4
4 6
6 8
8 9
"""
return ((i, min(i + step, stop)) for i in range(start, stop, step))
def parse_cooler_uri(s: str) -> tuple[str, str]:
"""
Parse a Cooler URI string
e.g. /path/to/mycoolers.cool::/path/to/cooler
"""
parts = s.split("::")
if len(parts) == 1:
file_path, group_path = parts[0], "/"
elif len(parts) == 2:
file_path, group_path = parts
if not group_path.startswith("/"):
group_path = "/" + group_path
else:
raise ValueError("Invalid Cooler URI string")
return file_path, group_path
def atoi(s: str) -> int:
return int(s.replace(",", ""))
def parse_humanized(s: str) -> int:
_NUMERIC_RE = re.compile("([0-9,.]+)")
_, value, unit = _NUMERIC_RE.split(s.replace(",", ""))
if not len(unit):
return int(value)
value = float(value)
unit = unit.upper().strip()
if unit in ("K", "KB"):
value *= 1000
elif unit in ("M", "MB"):
value *= 1000000
elif unit in ("G", "GB"):
value *= 1000000000
else:
raise ValueError(f"Unknown unit '{unit}'")
return int(value)
def parse_region_string(s: str) -> tuple[str, int | None, int | None]:
"""
Parse a UCSC-style genomic region string into a triple.
Parameters
----------
s : str
UCSC-style string, e.g. "chr5:10,100,000-30,000,000". Ensembl and FASTA
style sequence names are allowed. End coordinate must be greater than
or equal to start.
Returns
-------
(str, int or None, int or None)
"""
def _tokenize(s):
token_spec = [
("HYPHEN", r"-"),
("COORD", r"[0-9,]+(\.[0-9]*)?(?:[a-z]+)?"),
("OTHER", r".+"),
]
pattern = r"|\s*".join([rf"(?P<{pair[0]}>{pair[1]})" for pair in token_spec])
tok_regex = re.compile(rf"\s*{pattern}", re.IGNORECASE)
for match in tok_regex.finditer(s):
typ = match.lastgroup
yield typ, match.group(typ)
def _check_token(typ, token, expected):
if typ is None:
raise ValueError("Expected {} token missing".format(" or ".join(expected)))
else:
if typ not in expected:
raise ValueError(f'Unexpected token "{token}"')
def _expect(tokens):
typ, token = next(tokens, (None, None))
_check_token(typ, token, ["COORD"])
start = parse_humanized(token)
typ, token = next(tokens, (None, None))
_check_token(typ, token, ["HYPHEN"])
typ, token = next(tokens, (None, None))
if typ is None:
return start, None
_check_token(typ, token, ["COORD"])
end = parse_humanized(token)
if end < start:
raise ValueError("End coordinate less than start")
return start, end
parts = s.split(":")
chrom = parts[0].strip()
if not len(chrom):
raise ValueError("Chromosome name cannot be empty")
if len(parts) < 2:
return (chrom, None, None)
start, end = _expect(_tokenize(parts[1]))
return (chrom, start, end)
def parse_region(
reg: GenomicRangeSpecifier,
chromsizes: dict | pd.Series | None = None
) -> GenomicRangeTuple:
"""
Genomic regions are represented as half-open intervals (0-based starts,
1-based ends) along the length coordinate of a contig/scaffold/chromosome.
Parameters
----------
reg : str or tuple
UCSC-style genomic region string, or
Triple (chrom, start, end), where ``start`` or ``end`` may be ``None``.
chromsizes : mapping, optional
Lookup table of scaffold lengths to check against ``chrom`` and the
``end`` coordinate. Required if ``end`` is not supplied.
Returns
-------
A well-formed genomic region triple (str, int, int)
"""
if isinstance(reg, str):
chrom, start, end = parse_region_string(reg)
else:
chrom, start, end = reg
start = int(start) if start is not None else start
end = int(end) if end is not None else end
try:
clen = chromsizes[chrom] if chromsizes is not None else None
except KeyError as e:
raise ValueError(f"Unknown sequence label: {chrom}") from e
start = 0 if start is None else start
if end is None:
if clen is None: # TODO --- remove?
raise ValueError("Cannot determine end coordinate.")
end = clen
if end < start:
raise ValueError("End cannot be less than start")
if start < 0 or (clen is not None and end > clen):
raise ValueError(f"Genomic region out of bounds: [{start}, {end})")
return chrom, start, end
def natsort_key(s: str, _NS_REGEX=re.compile(r"(\d+)", re.U)) -> tuple:
return tuple([int(x) if x.isdigit() else x for x in _NS_REGEX.split(s) if x])
def natsorted(iterable: Iterable[str]) -> list[str]:
return sorted(iterable, key=natsort_key)
def argnatsort(array: Iterable[str]) -> np.ndarray:
array = np.asarray(array)
if not len(array):
return np.array([], dtype=int)
cols = tuple(zip(*(natsort_key(x) for x in array)))
return np.lexsort(cols[::-1])
[docs]
def read_chromsizes(
filepath_or: str | IO[str],
name_patterns: tuple[str, ...] = (r"^chr[0-9]+$", r"^chr[XY]$", r"^chrM$"),
all_names: bool = False,
**kwargs,
) -> pd.Series:
"""
Parse a ``<db>.chrom.sizes`` or ``<db>.chromInfo.txt`` file from the UCSC
database, where ``db`` is a genome assembly name.
Parameters
----------
filepath_or : str or file-like
Path or url to text file, or buffer.
name_patterns : sequence, optional
Sequence of regular expressions to capture desired sequence names.
Each corresponding set of records will be sorted in natural order.
all_names : bool, optional
Whether to return all contigs listed in the file. Default is
``False``.
Returns
-------
:py:class:`pandas.Series`
Series of integer bp lengths indexed by sequence name.
References
----------
* `UCSC assembly terminology <http://genome.ucsc.edu/FAQ/FAQdownloads.html#download9>`_
* `GRC assembly terminology <https://www.ncbi.nlm.nih.gov/grc/help/definitions>`_
"""
if isinstance(filepath_or, str) and filepath_or.endswith(".gz"):
kwargs.setdefault("compression", "gzip")
chromtable = pd.read_csv(
filepath_or,
sep="\t",
usecols=[0, 1],
names=["name", "length"],
dtype={"name": str},
**kwargs,
)
if not all_names:
parts = []
for pattern in name_patterns:
part = chromtable[chromtable["name"].str.contains(pattern)]
part = part.iloc[argnatsort(part["name"])]
parts.append(part)
chromtable = pd.concat(parts, axis=0)
chromtable.index = chromtable["name"].values
return chromtable["length"]
[docs]
def fetch_chromsizes(db: str, **kwargs) -> pd.Series:
"""
Download chromosome sizes from UCSC as a :py:class:`pandas.Series`, indexed
by chromosome label.
"""
return read_chromsizes(
f"http://hgdownload.soe.ucsc.edu/goldenPath/{db}/database/chromInfo.txt.gz",
**kwargs,
)
def load_fasta(names: list[str], *filepaths: str) -> OrderedDict[str, Any]:
"""
Load lazy FASTA records from one or multiple files without reading them
into memory.
Parameters
----------
names : sequence of str
Names of sequence records in FASTA file or files.
filepaths : str
Paths to one or more FASTA files to gather records from.
Returns
-------
OrderedDict of sequence name -> sequence record
"""
import pyfaidx
if len(filepaths) == 0:
raise ValueError("Need at least one file")
if len(filepaths) == 1:
fa = pyfaidx.Fasta(filepaths[0], as_raw=True)
else:
fa = {}
for filepath in filepaths:
fa.update(pyfaidx.Fasta(filepath, as_raw=True).records)
records = OrderedDict((chrom, fa[chrom]) for chrom in names)
return records
[docs]
def binnify(chromsizes: pd.Series, binsize: int) -> pd.DataFrame:
"""
Divide a genome into evenly sized bins.
Parameters
----------
chromsizes : Series
pandas Series indexed by chromosome name with chromosome lengths in bp.
binsize : int
size of bins in bp
Returns
-------
bins : :py:class:`pandas.DataFrame`
Dataframe with columns: ``chrom``, ``start``, ``end``.
"""
def _each(chrom):
clen = chromsizes[chrom]
n_bins = int(np.ceil(clen / binsize))
binedges = np.arange(0, (n_bins + 1)) * binsize
binedges[-1] = clen
return pd.DataFrame(
{"chrom": [chrom] * n_bins, "start": binedges[:-1], "end": binedges[1:]},
columns=["chrom", "start", "end"],
)
bintable = pd.concat(map(_each, chromsizes.keys()), axis=0, ignore_index=True)
bintable["chrom"] = pd.Categorical(
bintable["chrom"], categories=list(chromsizes.index), ordered=True
)
return bintable
make_bintable = binnify
[docs]
def digest(fasta_records: OrderedDict[str, Any], enzyme: str) -> pd.DataFrame:
"""
Divide a genome into restriction fragments.
Parameters
----------
fasta_records : OrderedDict
Dictionary of chromosome names to sequence records.
enzyme: str
Name of restriction enzyme (e.g., 'DpnII').
Returns
-------
frags : :py:class:`pandas.DataFrame`
Dataframe with columns: ``chrom``, ``start``, ``end``.
"""
try:
import Bio.Restriction as biorst
import Bio.Seq as bioseq
except ImportError:
raise ImportError(
"Biopython is required to find restriction fragments."
) from None
# http://biopython.org/DIST/docs/cookbook/Restriction.html#mozTocId447698
chroms = fasta_records.keys()
try:
cut_finder = getattr(biorst, enzyme).search
except AttributeError as e:
raise ValueError(f"Unknown enzyme name: {enzyme}") from e
def _each(chrom):
seq = bioseq.Seq(str(fasta_records[chrom][:]))
cuts = np.r_[0, np.array(cut_finder(seq)) + 1, len(seq)].astype(np.int64)
n_frags = len(cuts) - 1
frags = pd.DataFrame(
{"chrom": [chrom] * n_frags, "start": cuts[:-1], "end": cuts[1:]},
columns=["chrom", "start", "end"],
)
return frags
return pd.concat(map(_each, chroms), axis=0, ignore_index=True)
def get_binsize(bins: pd.DataFrame) -> int | None:
"""
Infer bin size from a bin DataFrame. Assumes that the last bin of each
contig is allowed to differ in size from the rest.
Returns
-------
int or None if bins are non-uniform
"""
sizes = set()
for _chrom, group in bins.groupby("chrom", observed=True):
sizes.update((group["end"] - group["start"]).iloc[:-1].unique())
if len(sizes) > 1:
return None
if len(sizes) == 1:
return next(iter(sizes))
else:
return None
def get_chromsizes(bins: pd.DataFrame) -> pd.Series:
"""
Infer chromsizes Series from a bin DataFrame. Assumes that the last bin of
each contig is allowed to differ in size from the rest.
Returns
-------
int or None if bins are non-uniform
"""
chromtable = (
bins.drop_duplicates(["chrom"], keep="last")[["chrom", "end"]]
.reset_index(drop=True)
.rename(columns={"chrom": "name", "end": "length"})
)
chroms, lengths = list(chromtable["name"]), list(chromtable["length"])
return pd.Series(index=chroms, data=lengths)
def bedslice(
grouped,
chromsizes: pd.Series | dict,
region: GenomicRangeSpecifier,
) -> pd.DataFrame:
"""
Range query on a BED-like dataframe with non-overlapping intervals.
"""
chrom, start, end = parse_region(region, chromsizes)
result = grouped.get_group(chrom)
if start > 0 or end < chromsizes[chrom]:
lo = result["end"].values.searchsorted(start, side="right")
hi = lo + result["start"].values[lo:].searchsorted(end, side="left")
result = result.iloc[lo:hi]
return result
def asarray_or_dataset(x: Any) -> np.ndarray | h5py.Dataset:
return x if isinstance(x, h5py.Dataset) else np.asarray(x)
def rlencode(
array: np.ndarray,
chunksize: int | None = None
) -> tuple[np.ndarray, np.ndarray, np.ndarray]:
"""
Run length encoding.
Based on http://stackoverflow.com/a/32681075, which is based on the rle
function from R.
Parameters
----------
x : 1D array_like
Input array to encode
dropna: bool, optional
Drop all runs of NaNs.
Returns
-------
start positions, run lengths, run values
"""
where = np.flatnonzero
array = asarray_or_dataset(array)
n = len(array)
if n == 0:
return (
np.array([], dtype=int),
np.array([], dtype=int),
np.array([], dtype=array.dtype),
)
if chunksize is None:
chunksize = n
starts, values = [], []
last_val = np.nan
for i in range(0, n, chunksize):
x = array[i : i + chunksize]
locs = where(x[1:] != x[:-1]) + 1
if x[0] != last_val:
locs = np.r_[0, locs]
starts.append(i + locs)
values.append(x[locs])
last_val = x[-1]
starts = np.concatenate(starts)
lengths = np.diff(np.r_[starts, n])
values = np.concatenate(values)
return starts, lengths, values
def cmd_exists(cmd: str) -> bool:
return any(
os.access(os.path.join(path, cmd), os.X_OK)
for path in os.environ["PATH"].split(os.pathsep)
)
def mad(data: np.ndarray, axis: int | None = None) -> np.ndarray:
return np.median(np.abs(data - np.median(data, axis)), axis)
@contextmanager
def open_hdf5(
fp: str | h5py.Group,
mode: str = "r",
*args,
**kwargs
) -> Generator[h5py.Group, None, None]:
"""
Context manager like ``h5py.File`` but accepts already open HDF5 file
handles which do not get closed on teardown.
Parameters
----------
fp : str or ``h5py.File`` object
If an open file object is provided, it passes through unchanged,
provided that the requested mode is compatible.
If a filepath is passed, the context manager will close the file on
tear down.
mode : str
* r Readonly, file must exist
* r+ Read/write, file must exist
* a Read/write if exists, create otherwise
* w Truncate if exists, create otherwise
* w- or x Fail if exists, create otherwise
"""
if isinstance(fp, str):
own_fh = True
fh = h5py.File(fp, mode, *args, **kwargs)
else:
own_fh = False
if mode == "r" and fp.file.mode == "r+":
# warnings.warn("File object provided is writeable but intent is read-only")
pass
elif mode in ("r+", "a") and fp.file.mode == "r":
raise ValueError("File object provided is not writeable")
elif mode == "w":
raise ValueError("Cannot truncate open file")
elif mode in ("w-", "x"):
raise ValueError("File exists")
fh = fp
try:
yield fh
finally:
if own_fh:
fh.close()
class closing_hdf5(h5py.Group):
def __init__(self, grp: h5py.Group):
super().__init__(grp.id)
def __enter__(self) -> h5py.Group:
return self
def __exit__(self, *exc_info) -> None:
return self.file.close()
def close(self) -> None:
self.file.close()
def attrs_to_jsonable(attrs: h5py.AttributeManager) -> dict:
out = dict(attrs)
for k, v in attrs.items():
try:
out[k] = v.item()
except ValueError:
out[k] = v.tolist()
except AttributeError:
out[k] = v
return out
def infer_meta(x, index=None): # pragma: no cover
"""
Extracted and modified from dask/dataframe/utils.py :
make_meta (BSD licensed)
Create an empty pandas object containing the desired metadata.
Parameters
----------
x : dict, tuple, list, pd.Series, pd.DataFrame, pd.Index, dtype, scalar
To create a DataFrame, provide a `dict` mapping of `{name: dtype}`, or
an iterable of `(name, dtype)` tuples. To create a `Series`, provide a
tuple of `(name, dtype)`. If a pandas object, names, dtypes, and index
should match the desired output. If a dtype or scalar, a scalar of the
same dtype is returned.
index : pd.Index, optional
Any pandas index to use in the metadata. If none provided, a
`RangeIndex` will be used.
Examples
--------
>>> make_meta([('a', 'i8'), ('b', 'O')])
Empty DataFrame
Columns: [a, b]
Index: []
>>> make_meta(('a', 'f8'))
Series([], Name: a, dtype: float64)
>>> make_meta('i8')
1
"""
_simple_fake_mapping = {
"b": np.bool_(True),
"V": np.void(b" "),
"M": np.datetime64("1970-01-01"),
"m": np.timedelta64(1),
"S": np.str_("foo"),
"a": np.str_("foo"),
"U": np.str_("foo"),
"O": "foo",
}
UNKNOWN_CATEGORIES = "__UNKNOWN_CATEGORIES__"
def _scalar_from_dtype(dtype):
if dtype.kind in ("i", "f", "u"):
return dtype.type(1)
elif dtype.kind == "c":
return dtype.type(complex(1, 0))
elif dtype.kind in _simple_fake_mapping:
o = _simple_fake_mapping[dtype.kind]
return o.astype(dtype) if dtype.kind in ("m", "M") else o
else:
raise TypeError(f"Can't handle dtype: {dtype}")
def _nonempty_scalar(x):
if isinstance(x, (pd.Timestamp, pd.Timedelta, pd.Period)):
return x
elif np.isscalar(x):
dtype = x.dtype if hasattr(x, "dtype") else np.dtype(type(x))
return _scalar_from_dtype(dtype)
else:
raise TypeError("Can't handle meta of type " f"'{type(x).__name__}'")
def _empty_series(name, dtype, index=None):
if isinstance(dtype, str) and dtype == "category":
return pd.Series(
pd.Categorical([UNKNOWN_CATEGORIES]), name=name, index=index
).iloc[:0]
return pd.Series([], dtype=dtype, name=name, index=index)
if hasattr(x, "_meta"):
return x._meta
if isinstance(x, (pd.Series, pd.DataFrame)):
return x.iloc[0:0]
elif isinstance(x, pd.Index):
return x[0:0]
index = index if index is None else index[0:0]
if isinstance(x, dict):
return pd.DataFrame(
{c: _empty_series(c, d, index=index) for (c, d) in x.items()}, index=index
)
if isinstance(x, tuple) and len(x) == 2:
return _empty_series(x[0], x[1], index=index)
elif isinstance(x, (list, tuple)):
if not all(isinstance(i, tuple) and len(i) == 2 for i in x):
raise ValueError(
"Expected iterable of tuples of (name, dtype), " f"got {x}"
)
return pd.DataFrame(
{c: _empty_series(c, d, index=index) for (c, d) in x},
columns=[c for c, d in x],
index=index,
)
elif not hasattr(x, "dtype") and x is not None:
# could be a string, a dtype object, or a python type. Skip `None`,
# because it is implictly converted to `dtype('f8')`, which we don't
# want here.
try:
dtype = np.dtype(x)
return _scalar_from_dtype(dtype)
except: # noqa
# Continue on to next check
pass
if is_scalar(x):
return _nonempty_scalar(x)
raise TypeError(f"Don't know how to create metadata from {x}")
def get_meta(
columns, dtype=None, index_columns=None, index_names=None, default_dtype=np.object_
): # pragma: no cover
"""
Extracted and modified from pandas/io/parsers.py :
_get_empty_meta (BSD licensed).
"""
columns = list(columns)
# Convert `dtype` to a defaultdict of some kind.
# This will enable us to write `dtype[col_name]`
# without worrying about KeyError issues later on.
if not isinstance(dtype, dict):
# if dtype == None, default will be default_dtype.
dtype = defaultdict(lambda: dtype or default_dtype)
else:
# Save a copy of the dictionary.
_dtype = dtype.copy()
dtype = defaultdict(lambda: default_dtype)
# Convert column indexes to column names.
for k, v in _dtype.items():
col = columns[k] if is_integer(k) else k
dtype[col] = v
if index_columns is None or index_columns is False:
index = pd.Index([])
else:
data = [pd.Series([], dtype=dtype[name]) for name in index_names]
if len(data) == 1:
index = pd.Index(data[0], name=index_names[0])
else:
index = pd.MultiIndex.from_arrays(data, names=index_names)
index_columns.sort()
for i, n in enumerate(index_columns):
columns.pop(n - i)
col_dict = {col_name: pd.Series([], dtype=dtype[col_name]) for col_name in columns}
return pd.DataFrame(col_dict, columns=columns, index=index)
def check_bins(bins: pd.DataFrame, chromsizes: pd.Series) -> pd.DataFrame:
is_cat = isinstance(bins["chrom"].dtype, pd.CategoricalDtype)
bins = bins.copy()
if not is_cat:
bins["chrom"] = pd.Categorical(
bins.chrom, categories=list(chromsizes.index), ordered=True
)
else:
assert (bins["chrom"].cat.categories == chromsizes.index).all()
return bins
def balanced_partition(
gs: GenomeSegmentation,
n_chunk_max: int,
file_contigs: list[str],
loadings: list[int | float] | None = None
) -> list[GenomicRangeTuple]:
# n_bins = len(gs.bins)
grouped = gs._bins_grouped
chrom_nbins = grouped.size()
if loadings is None:
loadings = chrom_nbins
chrmax = loadings.idxmax()
loadings = loadings / loadings.loc[chrmax]
const = chrom_nbins.loc[chrmax] / n_chunk_max
granges = []
for chrom, group in grouped:
if chrom not in file_contigs:
continue
clen = gs.chromsizes[chrom]
step = int(np.ceil(const / loadings.loc[chrom]))
anchors = group.start.values[::step]
if anchors[-1] != clen:
anchors = np.r_[anchors, clen]
granges.extend(
(chrom, start, end) for start, end in zip(anchors[:-1], anchors[1:])
)
return granges
class GenomeSegmentation:
def __init__(self, chromsizes: pd.Series, bins: pd.DataFrame):
bins = check_bins(bins, chromsizes)
self._bins_grouped = bins.groupby("chrom", observed=True, sort=False)
nbins_per_chrom = self._bins_grouped.size().values
self.chromsizes = chromsizes
self.binsize = get_binsize(bins)
self.contigs = list(chromsizes.keys())
self.bins = bins
self.idmap = pd.Series(index=chromsizes.keys(), data=range(len(chromsizes)))
self.chrom_binoffset = np.r_[0, np.cumsum(nbins_per_chrom)]
self.chrom_abspos = np.r_[0, np.cumsum(chromsizes.values)]
self.start_abspos = (
self.chrom_abspos[bins["chrom"].cat.codes] + bins["start"].values
)
def fetch(self, region: GenomicRangeSpecifier) -> pd.DataFrame:
chrom, start, end = parse_region(region, self.chromsizes)
result = self._bins_grouped.get_group(chrom)
if start > 0 or end < self.chromsizes[chrom]:
lo = result["end"].values.searchsorted(start, side="right")
hi = lo + result["start"].values[lo:].searchsorted(end, side="left")
result = result.iloc[lo:hi]
return result
def buffered(
chunks: Iterable[pd.DataFrame],
size: int = 10000000
) -> Iterator[pd.DataFrame]:
"""
Take an incoming iterator of small data frame chunks and buffer them into
an outgoing iterator of larger chunks.
Parameters
----------
chunks : iterator of :py:class:`pandas.DataFrame`
Each chunk should have the same column names.
size : int
Minimum length of output chunks.
Yields
------
Larger outgoing :py:class:`pandas.DataFrame` chunks made from concatenating
the incoming ones.
"""
buf = []
n = 0
for chunk in chunks:
n += len(chunk)
buf.append(chunk)
if n > size:
yield pd.concat(buf, axis=0)
buf = []
n = 0
if len(buf):
yield pd.concat(buf, axis=0)